The authors review the literature on massive soft tissue neurofibroma. The methods included a review of 71 reports (PubMed search 1929-2012) with a total of 91 massive soft tissue neurofibroma patients and illustration of clinical and radiological progression of massive soft tissue neurofibroma on a patient with neurofibromatosis type 1. The mean age at initial examination was 21 years. Tumor onset was mostly in childhood years. The commonest affected body segment was the lower extremity (46%), followed by head/neck (30%). Surgical management was pursued in the majority of cases (79%). Bleeding was a common complication (25%). Recurrence was described in 12%; multiple resections cases were described. Malignant transformation occurred in 5%. Although massive soft tissue neurofibroma may be present early in life, massive tumor overgrowth may take years. Predicting disease progression and/or benefit of surgical intervention early in the disease course is challenging. Recurrence and malignant transformation are possible. Massive soft tissue neurofibroma does not respond to chemotherapy or radiotherapy and is associated with life-threatening surgical complications.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0883073815571635DOI Listing

Publication Analysis

Top Keywords

massive soft
24
soft tissue
24
tissue neurofibroma
24
review literature
8
malignant transformation
8
massive
7
tissue
6
neurofibroma
6
soft
5
neurofibroma elephantiasis
4

Similar Publications

Behaviour of 7.62x39mm tracer and API bullets in soft tissue.

Forensic Sci Int

January 2025

Department of Medical Biology, Amsterdam UMC, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.

Some bullets, called tracer and API bullets, contain a pyrotechnical charge. The charge in the bottom of a tracer bullet burns in flight and enables the shooter or an observer to see the bullet's trajectory. An Armor Piercing Incendiary (API) bullet contains a hard core and a pyrotechnical charge that ignites on impact with a hard target.

View Article and Find Full Text PDF

Spreading dynamics of information on online social networks.

Proc Natl Acad Sci U S A

January 2025

Department of Statistics and Data Science, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.

Social media is profoundly changing our society with its unprecedented spreading power. Due to the complexity of human behaviors and the diversity of massive messages, the information-spreading dynamics are complicated, and the reported mechanisms are different and even controversial. Based on data from mainstream social media platforms, including WeChat, Weibo, and Twitter, cumulatively encompassing a total of 7.

View Article and Find Full Text PDF

Background: Rosai-Dorfman disease (RDD), also known as sinus histiocytosis with massive lymphadenopathy, is a rare non-malignant disorder characterized by excessive proliferation of histiocytes, the cause of which remains unknown. Although the lymph nodes are the most commonly affected site, some patients may present with extranodal involvement, particularly in the skin, nasal cavity, eyes, and bones. In this report, we aim to present a unique case of RDD with pleural involvement in a 61-year-old patient.

View Article and Find Full Text PDF

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is an open-source, powerful simulator with a customizable platform for extensive Langevin dynamics simulations. Here, we present a protocol for using LAMMPS to develop coarse-grained models of polymeric systems with macromolecular crowding, an integral part of any soft matter or biophysical system. We describe steps for installing software, using LAMMPS basic commands and code, and translocating polymers.

View Article and Find Full Text PDF

Neuronal segmentation in cephalopod arms.

Nat Commun

January 2025

Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA.

Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!