A major breakthrough in understanding the steps and signalling that drives the HCV to reach a full life-cycle has been achieved by in vitro models that have facilitated elevated virus production, resulting in the discovery of pathways and factors involved in virus entry, translation and replication. The HCV enters host cells through binding of its envelope glycoproteins to cell receptors, followed by clathrin-mediated endocytosis and fusion with cell membranes, leading to virus uncoating and cell entry. This chain of events is mediated by sequential involvement of different co-receptors, for example, SR-B1, CD81 and the tight-junction proteins- claudin and occludin. HCV RNA replication and translation are coupled processes, requiring cooperation of replicase, helicase and other viral proteins with cell-regulatory factors. Virion packaging and release are highly targetable steps, although they require greater in-depth investigation. The HCV-immune response appears to be fairly ineffective, and neutralizing antibodies that inhibit E2-CD81 binding are unable to resolve infection. HCV-transmission through cell-to-cell contact has been implicated in the evolution of chronic infection. In particular, CD81-dependency and the role of other co-factors involved in entry in cell-to-cell infection, as well as virus escape from host-neutralization still require confirmation. To highlight viral and cell mechanisms implicated in HCV-infection, we review here some of the major discoveries that have been made, from virus entry to its release from infected cells, in understanding the HCV host-cell interplay, which may help in defining new molecular targets to provide therapeutic antiviral strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389450116666150213111603 | DOI Listing |
Sci Rep
December 2024
School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
West Nile virus (WNV) is a mosquito-borne zoonotic flavivirus which often causes asymptomatic infection in humans but may develop into a deadly neuroinvasive disease. In this study, we aimed to investigate variables potentially associated with human WNV infection using human and mosquito WNV surveillance and monitoring datasets, established over 20 years, from 2003 to 2022, across the province of Ontario, Canada. We combined climatic and geographic data, mosquito surveillance data (n = 3010 sites), blood donation arboviral detection testing data in the human population, and demographic and socio-economic data from Canadian population censuses.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India.
A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, H NMR,C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS).
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil. Electronic address:
The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!