Numerous studies have indicated that rising ozone (O3) in the troposphere significantly decreased the photosynthesis and the activity of Rubisco enzyme. So it can be inferred that the N uptake and distribution within the plants could be affected by elevated O3. In this study, ten greening woody species, widely distributed in subtropical China, were exposed to charcoal-filtered air (CF, less than 20 nL · L(-1)) and elevated O3 (E-O3, mean concentration of 150 nL · L(-1)) in open top chambers. The results showed that E-O3 significantly reduced the leaves biomass in Liquidamba formosana by 20.9%, the stem biomass in Liriodendron chinense by 21.4%, the root biomass in L. formosana and L. chinense by 24.2% and 32.5%, respectively. E-O3 significantly affected the N concentration in the stem but not those in leaves and root. The N uptakes in the whole tree (Nlu), the leaves and the root were significantly affected by E-O3. Compared to CF, E-O3 significantly reduced the Nlu in L. chinense by 28.4% and Schima superba by 22.7% but significantly increased the Nlu in Neolitsea sericea by 15.5%. Elevated O3 concentration had no significant influence on N distribution within the plants across the selected 10 tree species.

Download full-text PDF

Source

Publication Analysis

Top Keywords

elevated concentration
8
tree species
8
distribution plants
8
e-o3 concentration
8
e-o3 reduced
8
leaves root
8
e-o3
5
[effects elevated
4
concentration
4
concentration nitrogen
4

Similar Publications

scMMAE: masked cross-attention network for single-cell multimodal omics fusion to enhance unimodal omics.

Brief Bioinform

November 2024

Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.

Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.

View Article and Find Full Text PDF

Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Copper, an essential trace element and biochemical cofactor in humans plays a critical role in maintaining health. Recent studies have identified a significant association between copper levels and the progression and metastasis of cancer. Copper is primarily absorbed in the intestinal tract, often leading to an imbalance of copper ions in the body.

View Article and Find Full Text PDF

Protective effects of berbamine against arginase-1 deficiency-induced injury in human brain microvascular endothelial cells.

Front Pharmacol

January 2025

Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.

Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.

View Article and Find Full Text PDF

The effect of thermoelectric craniocerebral cooling device on protecting brain functions in post-cardiac arrest syndrome.

Front Cardiovasc Med

January 2025

Department of Anesthesiology and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye.

Aim: This study aimed to protect brain functions in patients who experienced in-hospital cardiac arrest through the application of local cerebral hypothermia. By utilizing a specialized thermal hypothermia device, this approach sought to mitigate ischemic brain injury associated with post-cardiac arrest syndrome, enhance survival rates, and improve neurological outcomes as measured by standardized scales.

Methods: A prospective, single-center cohort study was conducted involving patients aged ≥18 years who experienced in-hospital cardiac arrest and achieved return of spontaneous circulation (ROSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!