NOx and SO2 formation in the sintering process and the influence of coke powder content, moisture content and adding additives on NO emissions were investigated by the sintering pot experimental method. The results showed that the combustion zone moved downward along the sintering pot after the sintering started. The NOx concentrations of all monitoring points below the combustion zone were basically the same. SO2 generated in the combustion zone was adsorbed and accumulated in the sintering materials below the zone. Then, SO2 was released by pyrolysis, and finally discharged from the outlet of sintering pot. So the significant SO2 couldn't be detected before the burning through point, and the relationship between the SO2 concentration and the sintering time displayed an inverted "V" curve. NOx produced from the sintering process was mainly thermal-NOx, and most of it was NO, the NO2 concentration was very low. Reducing the coke powder and moisture contents, or adding sintering additives could effectively reduce NOx emissions.
Download full-text PDF |
Source |
---|
J Colloid Interface Sci
January 2025
State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 China.
The dry reforming of methane (DRM) could convert CH and CO into syngas, offering potential for greenhouse gas mitigation. However, DRM catalyst sintering and carbon deposition remain major obstacles. In this study, a highly dispersed PtNi alloy@Zr-doped 3D hollow flower-like MgAlO (AMO) spheres was prepared through a hydrophobic driving strategy.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Environmental Science & Engineering, Ewha Womans University, South Korea.
A path to carbon neutrality requires the development of refrigeration units that use no refrigerant or emit less greenhouse gas (GHG), such as Thermoelectric coolers (TECs). Using the life cycle inventory assessment (LCIA), the environmental impacts of the manufacturing process of TECs were analyzed, including greenhouse gas emissions, human carcinogenic toxicity (HCT), terrestrial ecotoxicity (TE), freshwater ecotoxicity (FE), mineral resource scarcity (MRS), and fossil resource scarcity (FRS). The alumina plate manufacturing process produces the most GHG emissions because it uses a lot of electricity in the sintering process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.
Materials with both high thermoelectric (TE) performance and excellent magnetocaloric (MC) properties near room temperature are of great importance for all-solid-state TE/MC hybrid refrigeration. A combination of such two critical characteristics, however, is hardly attainable in single phase compounds. Herein we report a composite material that comprises Bi-Sb-Te thermoelectric and Ni-Mn-In magnetocaloric components as an innovative thermoelectromagnetic material with dual functionalities.
View Article and Find Full Text PDFSci Rep
January 2025
SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan.
Hydroxyapatite/zirconia (HAP/ZrO) composites were fabricated via the low-temperature mineralization sintering process (LMSP) at an extremely low temperature of 130 °C to enhance the mechanical properties of HAP and broaden its practical applications. For this purpose, 5-20 vol% calcia-stabilized ZrO were introduced into HAP, and HAP/ZrO nanoparticles, mixed with simulated body fluid, were densified under a uniaxial pressure of 800 MPa at 130 °C. At 10 vol% ZrO, the relative density of the HAP/ZrO composite was determined to be 88.
View Article and Find Full Text PDFRSC Adv
January 2025
Electronic Material Research Center, Northwest Institute for Nonferrous Metal Research Xi'an 710016 China.
Potassium is a harmful impurity in the rhenium sinter, which adversely affects its mechanical properties by significantly reducing the density of sintered rhenium. Cationic resin is a promising material for potassium removal. In this study, the strong acid cationic exchange resin C160H was pretreated with an HNO solution to enhance its performance in potassium removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!