In this report, a dipolar glass polymer, poly(2-(methylsulfonyl)ethyl methacrylate) (PMSEMA), was synthesized by free radical polymerization of the corresponding methacrylate monomer. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, PMSEMA exhibited a strong γ transition at a temperature as low as -110 °C at 1 Hz, about 220 °C below its glass transition temperature around 109 °C. Because of this strong γ dipole relaxation, the glassy PMSEMA sample exhibited a high dielectric constant of 11.4 and a low dissipation factor (tan δ) of 0.02 at 25 °C and 1 Hz. From an electric displacement-electric field (D-E) loop study, PMSEMA demonstrated a high discharge energy density of 4.54 J/cm(3) at 283 MV/m, nearly 3 times that of an analogue polymer, poly(methyl methacrylate) (PMMA). However, the hysteresis loss was only 1/3-1/2 of that for PMMA. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipolar side groups are promising candidates for high energy density and low loss dielectric applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am508488wDOI Listing

Publication Analysis

Top Keywords

dipolar glass
12
high dielectric
8
dielectric constant
8
low loss
8
glass polymer
8
sulfone groups
8
large dipole
8
transition temperature
8
energy density
8
dipolar
5

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Lattice Matching Anchoring of Hole-Selective Molecule on Halide Perovskite Surfaces for n-i-p Solar Cells.

Adv Mater

November 2024

International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.

Exploiting the self-assembled molecules (SAMs) as hole-selective contacts has been an effective strategy to improve the efficiency and long-term stability of perovskite solar cells (PSCs). Currently, research works are focusing on constructing SAMs on metal oxide surfaces in p-i-n PSCs, but realizing a stable and dense SAM contact on halide perovskite surfaces in n-i-p PSCs is still challenging. In this work, the hole-selective molecule for n-i-p device is developed featuring a terephthalic methylammonium core structure that possesses double-site anchoring ability and a matching diameter (6.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how the structure and dynamics of electrolyte solutions affect ionic conductivity by measuring conductivity, viscosity, and dielectric relaxation in lithium bis(trifluoromethane)sulfonimide (LiTFSI) in triglyme.
  • Findings revealed that conductivity (σ) and dielectric relaxation times (⟨τ⟩) are somewhat independent of viscosity (η) and follow specific proportional relationships.
  • Additionally, Raman spectroscopy showed ion pair formation and an increase in glass transition temperature with LiTFSI concentration, highlighting interesting dependencies of conductivity on solution properties that could inform battery applications.
View Article and Find Full Text PDF

The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the molecular mobility during the glass transition of poly(vinyl acetate) (PVAc) and poly(ethylene-co-vinyl acetate) (EVA) by analyzing how temperature and pressure affect intermolecular interactions.
  • Researchers used time-temperature-pressure superpositions and relaxation time dispersion to assess the impact of the vinyl acetate (VAc) ratio on molecular interactions and cooperative behavior.
  • Results showed that the thermal and volumetric contributions to isobaric fragility vary based on the VAc ratio and pressure, highlighting the significant role of the dipolar pendant groups in these interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!