In this report, a dipolar glass polymer, poly(2-(methylsulfonyl)ethyl methacrylate) (PMSEMA), was synthesized by free radical polymerization of the corresponding methacrylate monomer. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, PMSEMA exhibited a strong γ transition at a temperature as low as -110 °C at 1 Hz, about 220 °C below its glass transition temperature around 109 °C. Because of this strong γ dipole relaxation, the glassy PMSEMA sample exhibited a high dielectric constant of 11.4 and a low dissipation factor (tan δ) of 0.02 at 25 °C and 1 Hz. From an electric displacement-electric field (D-E) loop study, PMSEMA demonstrated a high discharge energy density of 4.54 J/cm(3) at 283 MV/m, nearly 3 times that of an analogue polymer, poly(methyl methacrylate) (PMMA). However, the hysteresis loss was only 1/3-1/2 of that for PMMA. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipolar side groups are promising candidates for high energy density and low loss dielectric applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am508488w | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFAdv Mater
November 2024
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.
Exploiting the self-assembled molecules (SAMs) as hole-selective contacts has been an effective strategy to improve the efficiency and long-term stability of perovskite solar cells (PSCs). Currently, research works are focusing on constructing SAMs on metal oxide surfaces in p-i-n PSCs, but realizing a stable and dense SAM contact on halide perovskite surfaces in n-i-p PSCs is still challenging. In this work, the hole-selective molecule for n-i-p device is developed featuring a terephthalic methylammonium core structure that possesses double-site anchoring ability and a matching diameter (6.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Chemical and Biological Sciences (CBS), S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata 700106, India.
Phys Rev Lett
November 2024
Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (FI), Italy.
The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Univ. Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ., GPM UMR 6634, F-76000 Rouen, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!