Characterization of the dystrophin-glycoprotein complex in airway smooth muscle: role of δ-sarcoglycan in airway responsiveness.

Can J Physiol Pharmacol

Departments of Physiology and Pathophysiology, University of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada., Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada.

Published: March 2015

The dystrophin-glycoprotein complex (DGC) is an integral part of caveolae microdomains, and its interaction with caveolin-1 is essential for the phenotype and functional properties of airway smooth muscle (ASM). The sarcoglycan complex provides stability to the dystroglycan complex, but its role in ASM contraction and lung physiology in not understood. We tested whether δ-sarcoglycan (δ-SG), through its interaction with the DGC, is a determinant of ASM contraction ex vivo and airway mechanics in vivo. We measured methacholine (MCh)-induced isometric contraction and airway mechanics in δ-SG KO and wild-type mice. Last, we performed immunoblotting and transmission electron microscopy to assess DGC protein expression and the ultrastructural features of tracheal smooth muscle. Our results reveal an age-dependent reduction in the MCh-induced tracheal isometric force and significant reduction in airway resistance at high concentrations of MCh (50.0 mg/mL) in δ-SG KO mice. The changes in contraction and lung function correlated with decreased caveolin-1 and β-dystroglycan abundance, as well as an age-dependent loss of caveolae in the cell membrane of tracheal smooth muscle in δ-SG KO mice. Collectively, these results confirm and extend understanding of a functional role for the DGC in the contractile properties of ASM and demonstrate that this results in altered lung function in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjpp-2014-0389DOI Listing

Publication Analysis

Top Keywords

smooth muscle
16
dystrophin-glycoprotein complex
8
airway smooth
8
asm contraction
8
contraction lung
8
airway mechanics
8
tracheal smooth
8
δ-sg mice
8
lung function
8
airway
6

Similar Publications

Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.

View Article and Find Full Text PDF

Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.

Methods And Results: In this study, we employed a discovery-driven, unbiased approach.

View Article and Find Full Text PDF

Unlabelled: Excessive production of extracellular matrix is a key component in the pathogenesis of Salzmann's nodular degeneration (SND). studies of drugs that suppress excessive fibroblast activity may become crucial in developing pathogenetically oriented treatments for SND.

Purpose: This study evaluates the antifibrotic properties of pirfenidone and cyclosporine A (CsA) on cell cultures obtained from patients with SND.

View Article and Find Full Text PDF

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

miR-432-5p Targeting SORT1 to Protect Artery Smooth Muscle Cells and Inhibit Coronary Artery Disease.

Biochem Genet

December 2024

Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.

Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!