A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interfacial assembly of lipopeptide surfactants on octyltrimethoxysilane-modified silica surface. | LitMetric

Interfacial assembly of lipopeptide surfactants on octyltrimethoxysilane-modified silica surface.

Soft Matter

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266555, China.

Published: October 2013

The adsorption of a series of cationic lipopeptide surfactants, C14Kn (where C14 denotes the myristic acyl chain and Kn represents n number of lysine residues) at the hydrophobic solid/water interface has been studied using spectroscopic ellipsometry (SE) and neutron reflection (NR). The hydrophobic C8 surface was prepared by grafting a monolayer of octyltrimethoxysilane on the silicon surface. SE was used to follow the dynamic adsorption from these lipopeptide surfactants and the amount was found to undergo a fast increase within the first 2-3 min, followed by a much slower process tending to equilibration in the subsequent 15-20 min. Lipopetide surfactants with n = 1-4 showed similar dynamic features, indicating that the interaction between the acyl chain and the C8 surface is the main driving force for adsorption. The saturation adsorption amount of C14Kn at the C8/water interface was found to be inversely related to the increasing number of Lys residues in the head group due to the increase of steric hindrance and electrostatic repulsion between the head groups. Solution concentration had a significant effect on the initial adsorption rate, similar to the feature observed from nonionic surfactants CmEn. The structure of the adsorbed layers was studied by NR in conjunction with isotopic contrasts. The layer formed by the head groups of C14K1 was 10 Å thick, and those formed by C14K2, C14K3 and C14K4 head groups were all about 13 Å thick. In contrast, the thicknesses of the layers formed by hydrophobic tails of C14K1, C14K2 C14K3, and C14K4 were found to be 17, 13, 10, and 10 Å, respectively, resulting in the steady increase of area per molecule at the interface from 29 ± 2 Å(2) for C14K1 to 65 ± 2 Å(2) for C14K4. Thus, with an increase in the head group length, the molecules in the adsorbed layer tended to lie down upon adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3sm51271aDOI Listing

Publication Analysis

Top Keywords

lipopeptide surfactants
12
head groups
12
acyl chain
8
head group
8
c14k2 c14k3
8
c14k3 c14k4
8
adsorption
6
surfactants
5
head
5
interfacial assembly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!