Oncogenesis and induced pluripotency - commonalities of signalling pathways.

Contemp Oncol (Pozn)

The International Institute of Molecular and Cell Biology, Warsaw, Poland ; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland ; Gene Therapy Laboratory, Department of Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.

Published: February 2015

AI Article Synopsis

  • Recent advancements in reprogramming adult cells into stem cells show similarities with how cancer cells can also be reprogrammed.
  • The characteristics of stem cells, such as their ability to self-renew and differentiate, align closely with the traits of cancer cells, including rapid growth and adaptability.
  • The review highlights essential transcription factors related to embryonic stem cells that are often overexpressed in cancers, and explores the signaling pathways that link induced pluripotency with cancer development, emphasizing the role of the tumor suppressor p53.

Article Abstract

Rapid progress in the field of adult cells reprogramming back into a stem cell-like fate revealed shared mechanisms of action with tumoural reprogramming. A hallmark of stem cells - self-renewal and differentiation potential - seems to be tightly interlaced with large proliferation capacity and cellular plasticity of cancer cells. In this review, we briefly summarise the core transcription factors critical to maintenance of ES cell signature and overexpressed in many types of cancer, as well as signalling pathways involved in both induced pluripotency and oncogenesis, with particular regard to the role of tumour suppressor p53.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322532PMC
http://dx.doi.org/10.5114/wo.2014.47133DOI Listing

Publication Analysis

Top Keywords

induced pluripotency
8
signalling pathways
8
oncogenesis induced
4
pluripotency commonalities
4
commonalities signalling
4
pathways rapid
4
rapid progress
4
progress field
4
field adult
4
adult cells
4

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate.

View Article and Find Full Text PDF

Protocol for live imaging of axonal transport in iPSC-derived iNeurons.

STAR Protoc

January 2025

Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany. Electronic address:

Studies of human induced pluripotent stem cell (iPSC)-derived neurons promise important insights into neurodegenerative diseases. Here, we present a protocol for live imaging of axonal transport in glutamatergic iPSC-derived neurons (iNeurons). We describe steps for the differentiation of iPSCs into iNeurons via PiggyBac-mediated neurogenin 2 (NGN2) delivery, iNeuron culture and transfection, and the acquisition and analysis of time-lapse images.

View Article and Find Full Text PDF

TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs.

Microsc Microanal

January 2025

Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.

The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3.

View Article and Find Full Text PDF

Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues.

Tissue Eng Regen Med

January 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.

Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.

Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!