An inclined air-curtain (IAC) fume hood was developed and characterized using the laser-assisted smoke flow visualization technique and tracer-gas (sulphur hexafluoride) concentration detection method. The IAC fume hood features four innovative design elements: (i) an elongated suction slot installed at the hood roof with an offset towards the rear wall, (ii) an elongated up-blowing planar jet issued from the work surface near the hood inlet, (iii) two deflection plates installed at the left and right side walls, and (iv) a boundary-layer separation controller installed at the sash bottom. Baffles employed in conventional hoods were not used. The suction slot and the up-blowing planar jet formed a rearward-inclined push-pull air curtain. The deflection plates worked with the inclined air curtain to induce four rearward-inclined counter-rotating 'tornados.' The fumes generated in the hood were isolated behind the rearward-inclined air curtain, entrained by the low pressure within the vortical flows, moved up spirally, and finally exhausted through the suction slot. The risk of containment leakage due to the large recirculation vortex that usually exists behind the sash of conventional hoods was reduced by the boundary-layer separation controller. The results of the tracer-gas concentration detection method based on the EN-14175 method showed that the flow field created by the geometric configurations of the IAC hood presented characteristics of low leakage and high resistance to dynamic disturbances at low face velocities. The leakage levels measured by the static, sash movement, and walk-by tests were negligible at a face velocity of 0.26 m s(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annhyg/mev004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!