It is often reported in the technical literature that the presence of vegetation improves the methane oxidation efficiency of biosystems; however, the phenomena involved and biosystem performance results are still poorly documented, particularly in the field. This triggered a study to assess the importance of vegetation in methane oxidation efficiency (MOE). In this study, 4 large scale columns, each filled with sand, topsoil and a mixture of compost and topsoil were tested under controlled conditions in the laboratory and partially controlled conditions in the field. Four series of laboratory tests and two series of field tests were performed. 4 different plant covers were tested for each series: Trifolium repens L. (White clover), Phleum pratense L. (Timothy grass), a mixture of both, and bare soil as the control biosystem. The study results indicated that up to a loading equal to 100 g CH4/m(2)/d, the type of plant cover did not influence the oxidation rates, and the MOE was quite high (⩾ 95%) in all columns. Beyond this point, the oxidation rate continued to increase, reaching 253 and 179 g CH4/m(2)/d in laboratory and field tests respectively. In the end, the bare soil achieved as high or higher MOEs than vegetated biosystems. Despite the fact that the findings of this study cannot be generalized to other types of biosystems and plants and that the vegetation types tested were not fully grown, it was shown that for the short-term tests performed and the types of substrates and plants used herein, vegetation does not seem to be a key factor for enhancing biosystem performance. This key conclusion does not corroborate the conclusion of the relatively few studies published in the technical literature assessing the importance of vegetation in MOE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2015.01.031 | DOI Listing |
Chemistry
January 2025
Ningbo University, School of Material Science and Chemical Engineering, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan., 315211, Ningbo, CHINA.
Direct oxidation of methane to methanol utilizing molecular oxygen under mild conditions is an important yet challenging process due to the difficulty in activation of methane under such conditions. In this research, we report zeolitic octahedral metal oxides based on cobalt vanadotungstates, which act as the catalysts for oxidation of methane using molecular oxygen as the oxidant without co-reductants at a low temperature of 90 oC even as low as 60 oC. This catalytic process results in the high-yield production of methanol as the major product.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Materials Science and Engineering, Binghamton University, Binghamton, New York 13905, United States.
Atomic layer deposition (ALD) is a popular method of coating battery electrodes with metal oxides for improved cycling stability. While significant research has focused on the interaction between the reactive metal alkyl precursor and the electrode materials, little is known about the reactivity of the precursor toward other components of the battery electrode, such as the polymer binder. This study presents a combined computational and experimental investigation of the reaction between the popular polyvinylidene (PVDF) binder and the trimethylaluminum (TMA) precursor commonly used for coating AlO by ALD.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Light-driven direct conversion of methane to formic acid is a promising approach to convert methane to value-added chemicals and promote sustainability. However, this process remains challenging due to the complex requirements for multiple protons and electrons. Herein, we report the design of WO-based photocatalysts modified with Pt active sites to address this challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!