In this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover, evaporative crystallization of a large volume of solution was performed. As we found, paraffin which is non-polar surface promotes formation of crystals morphologically similar to those obtained via bulk evaporative crystallization. On the other hand, when crystallization is carried out on the polar surfaces (glass and PVA), there is a significant orientation effect. This phenomenon is manifested by the reduction of the number of peaks in PXRD spectrum recorded for deposited on the surface crystals. Noteworthy, reduction of PXRD signals is not observed for powder samples obtained after scraping crystals off the glass. In order to explain the mechanism of carboxylic crystals growth on the polar surfaces, quantum-chemical computations were performed. It has been found that crystal faces of the strongest orientation effect can be characterized by the highest surface densities of intermolecular interactions energy (IIE). In case of SA and ASA crystals formed on the polar surfaces the most dominant faces are characterized by the highest adhesive and cohesive properties. This suggests that the selection rules of the orientation effect comes directly from surface IIE densities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333231PMC
http://dx.doi.org/10.1007/s00894-015-2599-zDOI Listing

Publication Analysis

Top Keywords

evaporative crystallization
16
polar surfaces
12
crystals
9
asa crystals
8
surfaces glass
8
characterized highest
8
crystallization
5
surface
5
origin surface
4
surface imposed
4

Similar Publications

Organic Molecules Induce the Formation of Hopper-Like NaCl Crystals under Rapid Evaporation As Microcatalytic Reactors To Facilitate Micro/Nanoplastic Degradation.

Nano Lett

January 2025

Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China.

As representative examples of inorganic ionic crystals, NaCl and KCl usually form cubes during the natural evaporation process. Herein, we report the hopper-like NaCl and KCl crystals formed on the iron surface under rapid vacuum evaporation aided by organic molecules. Theoretical and experimental results indicate that it is attributed to the organic molecules alternating adsorption between {100} and {110} surfaces instead of adsorbing a single surface, as well as the fast crystal growth rate.

View Article and Find Full Text PDF

Plasmonic Slippery Surface for Surface-Enhanced Raman Spectroscopy and Protein Adsorption Inhibition.

Anal Chem

January 2025

Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.

Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.

View Article and Find Full Text PDF

In this study, we present the growth of large (millimeter- and centimeter-scale) crystals of RbSnBr double perovskite a hydrothermal process. The crystals and powders were successfully synthesized, yielding light-yellow products, and subjected to comprehensive characterization using powder and single crystal X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS) point analysis, and UV-Vis diffuse reflectance spectroscopy. Previously, methods such as solution growth, evaporation, and gel techniques have been employed to synthesize RbSnBr.

View Article and Find Full Text PDF

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Dynamic Brush Surface Inducing Mobile Crystallization for Sustainable Spray Cooling Using Saline.

Nano Lett

January 2025

School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.

Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!