The human gut is over a meter in length, liquid residence times span several hours. Recapitulating the human gut microbiome "on chip" holds promise to revolutionize therapeutic strategies for a variety of diseases, as well as for maintaining homeostasis in healthy individuals. A more refined understanding of bacterial-bacterial and bacterial-epithelial cell signalling is envisioned and such a device is a key enabler. Indeed, significant advances in the study of bacterial cell-cell signalling have been reported, including at length and time scales of the cells and their responses. Few reports exist, however, where signalling events that span physiologically relevant time scales are monitored and coordinated. Here, we employ principles of biofabrication to assemble, in situ, cell communities that are (i) spatially adjacent within partitioned microchannels for studying near communication and (ii) distally connected within longitudinal microfluidic networks so as to mimic long distance signalling among intestinal flora. We observed native signalling processes of the bacterial quorum sensing autoinducer-2 (AI-2) system among and between these communities. Cells in an upstream device successfully self-reported their activities and also secreted autoinducers that were carried downstream to the assembled networks of bacteria that reported on their presence. Furthermore, active signal modulation of among distal populations was demonstrated in a "programmed" manner where "enhancer" and "reducer" communities were assembled adjacent to the test population or "reporter" cells. The modulator cells either amplified or attenuated the cell-cell signalling between the distal, already communicating cell populations. Modulation was quantified with a bioassay, and the reaction rates of signal production and consumption were further characterized using a first principles mathematical model. Simulated distribution profiles of signalling molecules in the cell-gel composites agreed well with the observed cellular responses. We believe this simple platform and the ease by which it is assembled can be applied to other cell-cell interaction studies among various species or kingdoms of cells within well-regulated microenvironments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5lc00107b | DOI Listing |
Exp Biol Med (Maywood)
January 2025
West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.
View Article and Find Full Text PDFBiophys Rev
December 2024
Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain.
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.
View Article and Find Full Text PDFUnlabelled: Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130 and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors including PDFGRα and NRP2 has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear.
View Article and Find Full Text PDFJ Liposome Res
January 2025
Phoenix Veterans Affairs Healthcare System, Phoenix, Arizona, USA.
Gangliosides, glycosphingolipids with one or more N-acetyl-neuraminic acid groups, play essential roles in various cellular and biological processes, among them are cell signaling, neuronal development, cell-cell recognition and the modulation of immune response. Based on their multiple biological roles, the pharmacological utilization of gangliosides for the therapy of several clinical conditions is currently widely being explored but hampered by its limited water solubility. To increase the bioavailability of poorly water-soluble therapeutic agents, pharmaceutical nanocarriers such as liposomes have been developed over the last fifty years.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!