AtSFT12, an Arabidopsis Qc-SNARE protein, is localized to Golgi organelles and is involved in salt and osmotic stress responses via accumulation of Na (+) in vacuoles. To reduce the detrimental effects of environmental stresses, plants have evolved many defense mechanisms. Here, we identified an Arabidopsis Qc-SNARE gene, AtSFT12, involved in salt and osmotic stress responses using an activation-tagging method. Both activation-tagged plants and overexpressing transgenic plants (OXs) of the AtSFT12 gene were tolerant to high concentrations of NaCl, LiCl, and mannitol, whereas loss-of-function mutants were sensitive to NaCl, LiCl, and mannitol. AtSFT12 transcription increased under NaCl, ABA, cold, and mannitol stresses but not MV treatment. GFP-fusion AtSFT12 protein was juxtaposed with Golgi marker, implying that its function is associated with Golgi-mediated transport. Quantitative measurement of Na(+) using induced coupled plasma atomic emission spectroscopy revealed that AtSFT12 OXs accumulated significantly more Na(+) than WT plants. In addition, Na(+)-dependent fluorescence analysis of Sodium Green showed comparatively higher Na(+) accumulation in vacuoles of AtSFT12 OX cells than in those of WT plant cells after salt treatments. Taken together, our findings suggest that AtSTF12, a Golgi Qc-SNARE protein, plays an important role in salt and osmotic stress responses and functions in the salt stress response via sequestration of Na(+) in vacuoles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-015-1771-3 | DOI Listing |
Appl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China. Electronic address:
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Department of Biochemistry, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!