Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications.

J Comput Chem

Raman Centre for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Sciences, Jadavpur, Kolkata, India.

Published: April 2015

We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23851DOI Listing

Publication Analysis

Top Keywords

pilot applications
12
unitary group
8
group adapted
8
formulation pilot
8
active orbitals
8
localized orbitals
8
orbitals ensure
8
orbitals
5
adapted state
4
state specific
4

Similar Publications

People with symptomatic lower extremity peripheral artery disease (PAD) suffer from severe leg pain, walking impairment, and reduced quality of life, but few effective treatments are available. Emerging evidence suggests that regular heat therapy (HT) may improve cardiovascular and physical function in patients with PAD. However, the lack of accessible, practical modalities for unsupervised HT, especially for elderly individuals, has hindered clinical implementation.

View Article and Find Full Text PDF

Background: Sleep disturbances are common in pregnant and postpartum women, impacting their health. Predictive tools for timely intervention are scarce.

Objective: To develop and validate a nomogram predicting sleep disturbance risk in this demographic.

View Article and Find Full Text PDF

Introduction: Medical education typically focuses on the dyadic interaction between patient and physician. However, there is another significant presence in the room that can also impact the patient's health outcomes: caregivers. This topic has been relatively underexplored until now, and there is insufficient information available regarding situations in different cultures.

View Article and Find Full Text PDF

Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.

View Article and Find Full Text PDF

A new approach on design and verification of integrated sustainable urban drainage systems for stormwater management in urban areas.

J Environ Manage

January 2025

Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:

Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!