All living cells are subject to agents that promote DNA damage. A particularly lethal lesion are interstrand cross-links (ICL), a property exploited by several anti-cancer chemotherapies. In yeast and humans, an enzyme that plays a key role in repairing such damage are the PSO2/SNM1 nucleases. Here, we report that Trypanosoma brucei, the causative agent of African trypanosomiasis, possesses a bona fide member of this family (called TbSNM1) with expression of the parasite enzyme able to suppress the sensitivity yeast pso2Δ mutants display towards mechlorethamine, an ICL-inducing compound. By disrupting the Tbsnm1 gene, we demonstrate that TbSNM1 activity is non-essential to the medically relevant T. brucei life cycle stage. However, trypanosomes lacking this enzyme are more susceptible to bi- and tri-functional DNA alkylating agents with this phenotype readily complemented by ectopic expression of Tbsnm1. Genetically modified variants of the null mutant line were subsequently used to establish the anti-parasitic mechanism of action of nitrobenzylphosphoramide mustard and aziridinyl nitrobenzamide prodrugs, compounds previously shown to possess potent trypanocidal properties while exhibiting limited toxicity to mammalian cells. This established that these agents, following activation by a parasite specific type I nitroreductase, produce metabolites that promote formation of ICLs leading to inhibition of trypanosomal growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.12973 | DOI Listing |
Org Lett
January 2025
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
Human African trypanosomiasis (HAT) is one of the most lethal of the neglected tropical diseases. While the discovery of a novel antitrypanosomal drug is highly desired, the creation of a superior lead compound is challenging. Herein we report ukabamide (), which was isolated from a marine sp.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
January 2025
Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610, Wilrijk, Belgium. Electronic address:
Surra and Dourine are widespread diseases caused by two protozoan parasites Trypanosoma brucei evansi and Trypanosoma brucei equiperdum, respectively. A wide range of animals including camels, horses, cattle and buffaloes are susceptible to infection. These diseases pose a significant socio-economic burden, primarily due to the limited therapeutic options and the complications associated with toxicity and drug resistance, making disease management particularly challenging.
View Article and Find Full Text PDFChem Biodivers
January 2025
University of Lille: Universite de Lille, UMR BioEcoAgro, 3 rue du Professeur Laguesse, 59800, LILLE, FRANCE.
Parasitic diseases such as trypanosomiasis and leishmaniasis pose significant health challenges in Africa. The Senegalese Pharmacopoeia, known for its many medicinal plants with anti-infectious properties, can be a source of antiparasitic natural products. This study aimed to evaluate the in vitro antiparasitic activities of 33 methanolic extracts from 24 ethnopharmacologically selected plants against Trypanosoma brucei brucei and Leishmania mexicana mexicana, as well as their cytotoxic activities on WI-38 cells.
View Article and Find Full Text PDFNat Commun
January 2025
University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!