Combination chemotherapy can mediate drug synergy to improve treatment efficacy against a broad spectrum of cancers. However, conventional multidrug regimens are often additively determined, which have long been believed to enable good cancer-killing efficiency but are insufficient to address the nonlinearity in dosing. Despite improved clinical outcomes by combination treatment, multi-objective combination optimization, which takes into account tumor heterogeneity and balance of efficacy and toxicity, remains challenging given the sheer magnitude of the combinatorial dosing space. To enhance the properties of the therapeutic agents, the field of nanomedicine has realized novel drug delivery platforms that can enhance therapeutic efficacy and safety. However, optimal combination design that incorporates nanomedicine agents still faces the same hurdles as unmodified drug administration. The work reported here applied a powerful phenotypically driven platform, termed feedback system control (FSC), that systematically and rapidly converges upon a combination consisting of three nanodiamond-modified drugs and one unmodified drug that is simultaneously optimized for efficacy against multiple breast cancer cell lines and safety against multiple control cell lines. Specifically, the therapeutic window achieved from an optimally efficacious and safe nanomedicine combination was markedly higher compared to that of an optimized unmodified drug combination and nanodiamond monotherapy or unmodified drug administration. The phenotypically driven foundation of FSC implementation does not require any cellular signaling pathway data and innately accounts for population heterogeneity and nonlinear biological processes. Therefore, FSC is a broadly applicable platform for both nanotechnology-modified and unmodified therapeutic optimizations that represent a promising path toward phenotypic personalized medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b00638 | DOI Listing |
ChemMedChem
January 2025
National Institute of Standards and Technology, Material Measurement Laboratory, UNITED STATES OF AMERICA.
Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA. Electronic address:
Background: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson's disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada.
Bentonite clay nanoparticles assume a pivotal role in 3D bioprinting and tissue engineering by augmenting the mechanical rigidity and biological efficacy of hydrogels. In this investigation, Span80 was employed as a surfactant to facilitate the synthesis of uniformly sized bentonite nanoparticles measuring approximately 700 nm in diameter. The resultant hybrid hydrogel displaced a marked increase in compressive modulus, achieving a peak value of 17.
View Article and Find Full Text PDFMolecules
December 2024
Department of Cosmeceutics, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan.
This research aimed to modify polysaccharides extracted from the edible mushroom with gallic acid (GA) and to complex them with zinc ions. The functionalities of the modified polysaccharides (TFPs) were investigated. Regarding antioxidant activity, TFP-GA demonstrated effective scavenging activity against DPPH radicals, nitric oxide, and hydrogen peroxide.
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!