Controlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester-carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ring-opening copolymerization catalysis, using epoxides coupled with anhydrides or CO2, to produce polyesters and polycarbonates. In particular, the structures and performances of various homogeneous catalysts are presented for the epoxide-anhydride copolymerization. The properties of the resultant polyesters and polycarbonates are presented and future opportunities highlighted for developments of both the materials and catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cc10113h | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA.
Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey.
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
INESCOP Footwear Technology Centre, Alemania 102, 03600 Elda, Alicante, Spain.
This study aimed to enhance the initial adhesion performance of reactive polyurethane hot-melt adhesives by using a bio-based polycarbonate polyol instead of traditional polyester or polyether polyols and by incorporating thermoplastic polyurethane (TPU) in varied proportions. Adhesives synthesized from bio-based polycarbonate polyols and polypropylene glycol with MDI as the isocyanate were characterized chemically, thermally, and mechanically (FTIR, DSC, plate-plate rheology, DMA, and T-peel strength test). Adding 10-15 wt.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles, 28933, Madrid, Spain.
Scorpionate ligands have emerged as pivotal components in the field of coordination chemistry and catalysis since the seminal work by Trofimenko in the late 1960s. These species have demonstrated an extraordinarily rich tridentate coordination chemistry, enhancing the stability of metal complexes. In addition, they offer the possibility of modifying the chemical and electronical features as κ-ligands, providing a wide variety of potential substrates with multiple donor atoms.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy.
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer representative of the class of condensation reaction polymers obtained from the reaction of bisphenol A (BPA) and a carbonyl source, such as phosgene or alkyl and aryl carbonate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!