Cabozantinib, a potent pan-tyrosine kinase inhibitor, has been reported to provide enhanced antitumor efficacy by simultaneously inhibiting both MET and VEGF pathways, which are critical to tumor angiogenesis, survival and migration. It's very poor water solubility prevents its administration by the intravenous route, which may be important in patients unable to take the drug orally. In this study, we developed an efficient PEG-lipid-based polymeric micelle formulation with enhanced drug solubility and stability for cabozantinib delivery. DSPE-PEG micelles encapsulating cabozantinib were prepared by a thin-film rehydration method followed by a lyophilization process to generate the dry dosage form. The average hydrodynamic diameter of freshly prepared micelles was 11 nm with a narrow size distribution, and the dry micelle cake could be fully reconstituted by rehydration. Approximately 75% of the drug was encapsulated into the lyophilized cake, and a sustained drug release profile was observed in simulated normal physiological release medium. Compared with the free cabozantinib solution, the drug-loaded micelles displayed significantly enhanced intracellular accumulation and cytotoxicity in human glioblastoma cancer cells and non-small lung cancer cells. These results suggest that the micellar formulation of cabozantinib may serve as a promising nanocarrier in anticancer treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327881PMC

Publication Analysis

Top Keywords

dspe-peg micelles
8
cancer cells
8
cabozantinib
6
cabozantinib loaded
4
loaded dspe-peg
4
micelles
4
micelles delivery
4
delivery system
4
system formulation
4
formulation characterization
4

Similar Publications

Immunomodulatory and anti-ovarian cancer effects of novel astragalus polysaccharide micelles loaded with podophyllotoxin.

Int J Biol Macromol

December 2024

School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China. Electronic address:

Ovarian cancer, a highly lethal form of gynecological cancer globally, has witnessed notable advancements in its treatment through the integration of nanotechnology and immunotherapy. Here, we designed a novel astragalus polysaccharide vector (PDA), encapsulating podophyllotoxin (PPT), and modifying methotrexate (DSPE-PEG-MTX) on its surface for targeting ovarian cancer cells with high folate receptor expression. We prepared novel MTX-modified PPT-loaded astragalus polysaccharide micelles (MTX-PPT-micelles) by dialysis method and evaluated their characterization, stability, safety and targeting ability.

View Article and Find Full Text PDF

Introduction/objectives: The purpose of the study was to evaluate the suitability of mixed micelles prepared with D-α-tocopheryl polyethylene glycol succinate (TPGS) and 1,2- distearoyl-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) to encapsulate the poorly soluble anticancer drug fenretinide (4-HPR).

Methods: After assaying the solubilization ability of the surfactants by the equilibrium method, the micelles were prepared using the solvent casting technique starting from different 4-HPR:TPGS: DSPE-PEG w/w ratios. The resulting formulations were investigated for their stability under storage conditions and upon dilution, modelling the reaching of physiological concentrations after intravenous administration.

View Article and Find Full Text PDF

The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV.

View Article and Find Full Text PDF

P60, a Foxp3 inhibitory peptide, can hinder the regulatory T cell (Treg) activity and impair tumor proliferation. However, low systemic stability and poor specificity have led to daily dosing to achieve therapeutic effect. Therefore, this study aims to improve P60 stability and specific delivery through its encapsulation in liposomes targeting CD25, constitutively expressed in Tregs.

View Article and Find Full Text PDF

Effect of Surface Modification on the Luminescence of Individual Upconversion Nanoparticles.

Small

June 2024

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.

Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!