Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL.

Clin Cancer Res

Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Dana-Farber-Cancer Institute, and Harvard Medical School, Boston, Massachusetts. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Harvard Stem Cell Institute, Boston, Massachusetts.

Published: May 2015

Purpose: Histone deacetylase inhibitors (HDACi) have recently emerged as efficacious therapies that target epigenetic mechanisms in hematologic malignancies. One such hematologic malignancy, B-cell acute lymphoblastic leukemia (B-ALL), may be highly dependent on epigenetic regulation for leukemia development and maintenance, and thus sensitive to small-molecule inhibitors that target epigenetic mechanisms.

Experimental Design: A panel of B-ALL cell lines was tested for sensitivity to HDACi with varying isoform sensitivity. Isoform-specific shRNAs were used as further validation of HDACs as relevant therapeutic targets in B-ALL. Mouse xenografts of B-cell malignancy-derived cell lines and a pediatric B-ALL were used to demonstrate pharmacologic efficacy.

Results: Nonselective HDAC inhibitors were cytotoxic to a panel of B-ALL cell lines as well as to xenografted human leukemia patient samples. Assessment of isoform-specific HDACi indicated that targeting HDAC1-3 with class I HDAC-specific inhibitors was sufficient to inhibit growth of B-ALL cell lines. Furthermore, shRNA-mediated knockdown of HDAC1 or HDAC2 resulted in growth inhibition in these cells. We then assessed a compound that specifically inhibits only HDAC1 and HDAC2. This compound suppressed growth and induced apoptosis in B-ALL cell lines in vitro and in vivo, whereas it was far less effective against other B-cell-derived malignancies.

Conclusions: Here, we show that HDAC inhibitors are a potential therapeutic option for B-ALL, and that a more specific inhibitor of HDAC1 and HDAC2 could be therapeutically useful for patients with B-ALL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433811PMC
http://dx.doi.org/10.1158/1078-0432.CCR-14-1290DOI Listing

Publication Analysis

Top Keywords

cell lines
20
hdac1 hdac2
16
b-all cell
16
b-all
10
potential therapeutic
8
therapeutic option
8
option b-all
8
target epigenetic
8
panel b-all
8
hdac inhibitors
8

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!