Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342957 | PMC |
http://dx.doi.org/10.1098/rstb.2013.0551 | DOI Listing |
Sensors (Basel)
January 2025
Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Laboratory of Sensors/Actuators and Energy Harvesting, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania.
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronics Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon 61080, Türkiye.
Electric heaters are widely used owing to their portability, fast heating, single-focus heating, and energy efficiency advantages. Manufacturers provide customers with information on the power consumption and energy efficiency classes of heaters but do not provide any information on heating patterns. Knowing the heating pattern enables users to select the correct heater, which has a significant effect on comfort, health, energy efficiency, industrial process performance, plant growth, and climate change.
View Article and Find Full Text PDFFoods
January 2025
Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
This research aimed to evaluate the use of edible coating from a combination of liquid smoke and turmeric extract as a preservative for mackerel at room temperature. Liquid smoke was obtained from the pyrolysis of oil palm empty fruit bunches (OPEFB) at a temperature of 380 °C and purified by distillation at 190 °C. Liquid smoke with a concentration of 3% was combined with turmeric extract at a ratio of 2, 4, 6, and 8 g/L (CLS 2:1, CLS 4:1, CLS 6:1 and CLS 8:1).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Inmunotek SL Laboratories, 28000 Madrid, Spain.
Climate change is significantly altering the dynamics of airborne allergens, affecting their seasonality, allergenicity, and geographic distribution, which correlates with increasing rates of allergic diseases. This study investigates aeroallergen sensitization among populations from Tenerife, Spain, and Lima, Peru-two regions with similar climates but distinct socio-economic conditions. Our findings reveal that Spanish individuals, particularly those with asthma, demonstrate higher sensitization levels to a broader range of allergens, especially mites, with 85% of participants reacting to at least one mite allergen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!