Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cerebral ischemia is still one of the most important topics in neurosciences. Our study aimed to investigate the neuroprotective and anti-oxidant effects of glycyrrhizic acid on focal cerebral ischemia in rats. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where sham and glycyrrhizic acid were administered intraperitoneally following middle cerebral artery occlusion. Group I was evaluated as control. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF1) levels were analyzed biochemically on the right cerebral hemisphere, while ischemic histopathological studies were completed to investigate the anti-oxidant status. Biochemical results showed that SOD and NRF1 levels were significantly increased in the glycyrrhizic acid group compared with the sham group while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neurons were decreased in the glycyrrhizic acid group compared with the sham group. Cerebral ischemia was attenuated by glycyrrhizic acid administration. These observations indicate that glycyrrhizic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-015-0133-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!