Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The regulation of hypoxia-inducible factor-1 (HIF-1) transcriptional activity in the nucleus is related to factor inhibiting HIF-1 (FIH-1). FIH-1 hydrolyzes asparagine at the C-terminal of HIF-1α, preventing the interaction between HIF-1α and its associated cofactors, and leading to suppressed activation of HIF-1. FIH-1 is a cytosolic protein and its entry to the nucleus has to be coordinated with HIF-1α. The present study was undertaken to examine the correlation between HIF-1α and FIH-1 in their nuclear entry. Human umbilical vein endothelial cells were treated with dimethyloxalylglycine at a final concentration of 100 µM for 4 h, resulting in an accumulation of HIF-1α and an increase of FIH-1 in the nucleus as determined by Western blot analysis. Pretreatment of the cells with copper (Cu) chelator tetraethylenepentamine at 50 µM in cultures for 24 h reduced both HIF-1α protein levels and the HIF-1α entry to the nucleus, along with decreased FIH-1 protein levels in the nucleus but no changes in the total FIH-1 protein levels in the cells. These effects were prevented by simultaneous addition of 50 µM CuSO4 with tetraethylenepentamine. Gene-silencing of HIF-1α significantly inhibited FIH-1 entry to the nucleus, but did not affect the total protein levels of FIH-1 in the cells. This work demonstrates that the nuclear entry of FIH-1 depends on HIF-1α. Cu deficiency caused a decrease of HIF-1α, leading to suppression of FIH-1 entry to the nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935306 | PMC |
http://dx.doi.org/10.1177/1535370215570821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!