The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe's mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357647 | PMC |
http://dx.doi.org/10.1007/s00251-015-0827-4 | DOI Listing |
Genetica
December 2024
Facultad de Agronomía, Universidad de San Carlos de Guatemala, Guatemala City, 01012, Guatemala.
Abies guatemalensis Rehder, an endangered conifer endemic to Central American highlands, is ecologically vital in upper montane forests. It faces threats from habitat fragmentation, unsustainable logging, and illegal Christmas tree harvesting. While previous genetic studies on mature trees from eighteen populations showed high within-population diversity and limited among-population differentiation, the genetic impact of recent anthropogenic pressures on younger generations has yet to be discovered.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, 483 CBLS, 120 Flagg Road, Kingston, RI 02881, USA.
Amplicon panels using genotyping by sequencing methods are now common, but have focused on characterizing SNP markers. We investigate how microhaplotype (MH) discovery within a recently developed Pacific oyster (Magallana gigas) amplicon panel could increase the statistical power for relationship assignment. Trios (offspring and two parents) from three populations in a newly established breeding program were genotyped on a 592 locus panel.
View Article and Find Full Text PDFAm J Bot
December 2024
Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, F-21000, France.
Premise: Restoration of seminatural field margins can elevate pollinator activity. However, how they support wild plant gene flow through interactions between pollinators and spatiotemporal gradients in floral resources remains largely unknown.
Methods: Using a farm-scale experiment, we tested how mating outcomes (expected heterozygosity and paternity correlation) of the wild, self-incompatible plant Cyanus segetum transplanted into field margins (sown wildflower or grass-legume strips) were affected by the abundance of different pollinator functional groups (defined by species traits).
Curr Res Microb Sci
October 2024
Centre for Malaria and Other Tropical Diseases Care, University of Ilorin Teaching Hospital, Ilorin, Nigeria.
Background: The genetic progression of the MDR1 gene in , a key factor in drug resistance, presents significant challenges for malaria control. This study aims to elucidate the genetic diversity and evolutionary dynamics of P. falciparum, particularly focusing on the MDR1 gene across multi-regional populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!