A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. | LitMetric

Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.

Mater Sci Eng C Mater Biol Appl

Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. Electronic address:

Published: April 2015

Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(l-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228±62-320±22nm and 1.5-6.9μm respectively. Resulting nanofibrous scaffolds are highly porous (87-94%) with ultimate tensile strength observed in the range of 1.51-4.86MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2015.01.075DOI Listing

Publication Analysis

Top Keywords

nanofibrous scaffolds
20
bone tissue
12
hybrid nanofibrous
8
mesenchymal stem
8
stem cells
8
bio-composite nanofibrous
8
tissue engineering
8
osteogenic differentiation
8
differentiation mscs
8
nanofibrous
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!