Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications.

Mater Sci Eng C Mater Biol Appl

Department of Pharmacological and Physiological Science, Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63104, USA. Electronic address:

Published: April 2015

Much work has focused on developing synthetic materials that have tailored degradation profiles and physical properties that may prove useful in developing biomaterials for tissue engineering applications. In the present study, three different composite sheets consisting of biodegradable poly-ε-caprolactone (PCL) and varying types of bioactive glass were investigated. The three composites were composed of 50wt.% PCL and (1) 50wt.% 13-93 B3 borate glass particles, (2) 50wt.% 45S5 silicate glass particles, or (3) a blend of 25wt.% 13-93 B3 and 25wt.% 45S5 glass particles. Degradation profiles determined for each composite showed the composite that contained only 13-93 B3 borate glass had a higher degradation rate compared to the composite containing only 45S5 silicate glass. Uniaxial tensile tests were performed on the composites to determine the effect of adding glass to the polymer on mechanical properties. The peak stress of all of the composites was lower than that of PCL alone, but 100% PCL had a higher stiffness when pre-reacted in cell media for 6weeks, whereas composite sheets did not. Finally, to determine whether the composite sheets would maintain neuronal growth, dorsal root ganglia isolated from embryonic chicks were cultured on composite sheets, and neurite outgrowth was measured. The bioactive glass particles added to the composites showed no negative effects on neurite extension, and neurite extension increased on PCL:45S5 PCL:13-93 B3 when pre-reacted in media for 24h. This work shows that composite sheets of PCL and bioactive glass particles provide a flexible biomaterial for neural tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2015.01.060DOI Listing

Publication Analysis

Top Keywords

composite sheets
20
glass particles
20
bioactive glass
16
tissue engineering
12
engineering applications
12
glass
10
degradation profiles
8
composite
8
13-93 borate
8
borate glass
8

Similar Publications

Single-cell transcriptomics of bronchoalveolar lavage during PRRSV infection with different virulence.

Nat Commun

January 2025

Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the global swine industry due to its high genetic diversity and different virulence levels, which complicate disease management and vaccine development. This study evaluated longitudinal changes in the immune cell composition of bronchoalveolar lavage fluid and the clinical outcomes across PRRSV strains with varying virulence, using techniques including single-cell transcriptomics. In highly virulent infection, faster viral replication results in an earlier peak lung-damage time point, marked by significant interstitial pneumonia, a significant decrease in macrophages, and an influx of lymphocytes.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).

View Article and Find Full Text PDF

High-Mobility All-Transparent TFTs with Dual-Functional Amorphous IZTO for Channel and Transparent Conductive Electrodes.

Materials (Basel)

January 2025

Department of IT Semiconductor Convergence Engineering, Research Institute of Advanced Convergence Technology, Tech University of Korea, Siheung 15073, Republic of Korea.

The increasing demand for advanced transparent and flexible display technologies has led to significant research in thin-film transistors (TFTs) with high mobility, transparency, and mechanical robustness. In this study, we fabricated all-transparent TFTs (AT-TFTs) utilizing amorphous indium-zinc-tin-oxide (a-IZTO) as a dual-functional material for both the channel layer and transparent conductive electrodes (TCEs). The a-IZTO was deposited using radio-frequency magnetron sputtering, with its composition adjusted for both channel and electrode functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!