Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2015.01.002DOI Listing

Publication Analysis

Top Keywords

cell cultivation
12
manufacturing porous
8
porous scaffolds
8
porous polymer
8
polymer foils
8
porous
5
thermoforming
4
thermoforming techniques
4
techniques manufacturing
4
scaffolds
4

Similar Publications

Pulmonary hypertension (PH) is a severe pulmonary vascular disease characterized by poor clinical outcomes and limited therapeutic options. Celastrol (CEL), a natural product derived from Tripterygium wilfordii Hook F, has shown therapeutic potential in PH models, although its mechanisms are not fully understood. This study aims to investigate the role of CEL in PH and explore its potential underlying mechanisms.

View Article and Find Full Text PDF

Machine Learning-Powered Optimization of a CHO Cell Cultivation Process.

Biotechnol Bioeng

January 2025

Institute of Technical Chemistry, Faculty of Natural Sciences, Leibniz University Hannover, Hannover, Germany.

Chinese Hamster Ovary (CHO) cells are the most widely used cell lines to produce recombinant therapeutic proteins such as monoclonal antibodies (mAbs). However, the optimization of the CHO cell culture process is very complex and influenced by various factors. This study investigates the use of machine learning (ML) algorithms to optimize an established industrial CHO cell cultivation process.

View Article and Find Full Text PDF

The cytoplasm exhibits viscoelastic properties, displaying both solid and liquid-like behavior, and can actively regulate its mechanical attributes. The cytoskeleton is a major regulator among the numerous factors influencing cytoplasmic mechanics. We explore the interdependence of various cytoskeletal filaments and the impact of their density on cytoplasmic viscoelasticity.

View Article and Find Full Text PDF

The oleaginous yeast is recognized for its remarkable lipid accumulation under nitrogen-limited conditions. However, precise control of microbial lipid production in remains challenging due to the complexity of nutrient media. We developed a two-stage fed-batch fermentation process using a well-defined synthetic medium in a 5-L bioreactor.

View Article and Find Full Text PDF

Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!