Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although amylose as a naturally-occurring helical polysaccharide has been widely used for biomedical applications, few studies have dealt with its chemical modification for non-viral gene delivery. In this work, the click modification of amylose by poly(l-lysine) dendrons was carried out and then characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and elemental analyses. Such a modified polysaccharide exhibited excellent ability to condense plasmid pMSCV-GFP-PARK2 into compact and spherical nanoparticles. Moreover, it displayed much lower cytotoxicity when compared to branched polyethylenimine (bPEI, 25kDa), a commercially available gene vector. Similar to bPEI, it had a dose-dependent gene transfection activity in human embryonic kidney 293T cells, as observed by confocal laser scanning microscopy and flow cytometry. At each optimized N/P ratio, the percentage of transfected cells by this modified polysaccharide was found to be comparable to that by bPEI. Western blot and cell apoptosis analyses confirmed its effectiveness for the delivery of plasmid pMSCV-GFP-PARK2 to 293T cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.01.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!