Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phospholipid derivative lysophosphatidic acid (LPA) serves as a signalling molecule through the activation of LPA receptors, which belong to the G-protein-coupled receptors. From a pharmacological point of view, the ('EDG-like') LPA1-3 receptors have attracted much attention, therefore we have also been focusing in our study on these subtypes. The LPA1receptors are widely expressed in the human body; interestingly, LPA1 might have a role in the pathomechanism of obesity. In order to recognize key structural features of the molecular interactions of human LPA1with its agonists, we built up the 3D structure of the LPA1 through homology modeling. Next, LPA1 agonists and antagonists were docked into the model. The mode of binding and the interactions between ligands and key amino acids (R3.28 and Q3.29) were consistent with mutagenesis assays and previously published models, indicating that this model is able to discriminate high-affinity compounds and may be useful for the development of novel agonists of LPA1. Homology models were also constructed for LPA2 and LPA3. All available agonists with published EC50 values, antagonists with IC50 values and compounds with Ki values for either of LPA1, LPA2 or LPA3 were collected from the ChEMBL database and were docked into the corresponding model.Ourmodels for the LPA1-3 receptors can discriminate high-affinity compounds identified in silico HTS studies and may be useful for the development of novel agonistsof LPA receptors. With a better understanding of the differences between LPA1-3 receptors new, selective agonists and antagonist could be designed, which could be used in the therapy of various diseases with a better side-effect profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612821666150216120500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!