Human milk is recognised as the best form of nutrition for infants. However; in instances where breast-feeding is not possible, unsuitable or inadequate, infant milk formulae are used as breast milk substitutes. These formulae are designed to provide infants with optimum nutrition for normal growth and development and are available in either powdered or liquid forms. Powdered infant formula is widely used for convenience and economic reasons. However; current manufacturing processes are not capable of producing a sterile powdered infant formula. Due to their immature immune systems and permeable gastro-intestinal tracts, infants can be more susceptible to infection via foodborne pathogenic bacteria than other age-groups. Consumption of powdered infant formula contaminated by pathogenic microbes can be a cause of serious illness. In this review paper, we discuss the current manufacturing practices present in the infant formula industry, the pathogens of greatest concern, Cronobacter and Salmonella and methods of improving the intrinsic safety of powdered infant formula via the addition of antimicrobials such as: bioactive peptides; organic acids; probiotics and prebiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344585 | PMC |
http://dx.doi.org/10.3390/nu7021217 | DOI Listing |
Foods
January 2025
The College of Life and Geographic Sciences, Kashi University, Kashi 844000, China.
is a foodborne pathogen characterized by its robust stress tolerance and ability to form biofilms, which facilitates its survival in powdered infant formula (PIF) processing environments for prolonged periods. Gamma-aminobutyric acid (GABA) is a kind of non-protein amino acid that acts as an osmoprotectant. This study aimed to elucidate the effects of the gene on the survival of , GABA accumulation, and biofilm formation under desiccation, osmotic stress, and acid exposure.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China.
Infant formulas are constantly being updated and upgraded, and N-glycans are functional glycans that have not been fully exploited to date. Commercial whey protein materials are often used as basic ingredients in infant formulas. Therefore, it is important to study N-glycans in commercial whey protein materials.
View Article and Find Full Text PDFFood Chem
January 2025
CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:
Deoxynivalenol, a hazardous mycotoxin, poses significant health risks to humans and animals, necessitating highly sensitive detection methods due to its low abundance in food. Herein, we present a colorimetric sensing strategy for deoxynivalenol detection based on the inhibitory effect of silver ions on the peroxidase-like activity of Ni@Pt nanoparticles. Silver ions adsorb onto the surface of Ni@Pt nanoparticles, blocking the active site and consequently impeding their catalytic activity.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America.
The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!