Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

J Med Imaging (Bellingham)

University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States.

Published: October 2014

One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326078PMC
http://dx.doi.org/10.1117/1.JMI.1.3.031007DOI Listing

Publication Analysis

Top Keywords

image reconstruction
12
x-ray computed
8
computed tomography
8
iir algorithms
8
optimization problem
8
roi imaging
8
data
7
analysis iterative
4
iterative region-of-interest
4
region-of-interest image
4

Similar Publications

Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.

Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).

View Article and Find Full Text PDF

A platform combining automatic segmentation and automatic measurement of the maxillary sinus and adjacent structures.

Clin Oral Investig

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.

Objectives: To develop a platform including a deep convolutional neural network (DCNN) for automatic segmentation of the maxillary sinus (MS) and adjacent structures, and automatic algorithms for measuring 3-dimensional (3D) clinical parameters.

Materials And Methods: 175 CBCTs containing 242 MS were used as the training, validating and testing datasets at the ratio of 7:1:2. The datasets contained healthy MS and MS with mild (2-4 mm), moderate (4-10 mm) and severe (10- mm) mucosal thickening.

View Article and Find Full Text PDF

3-Dimensional topographic enamel surface changes after different debonding techniques for aligner attachments: a micro-CT study.

Clin Oral Investig

January 2025

Faculty of Dentistry, Department of Orthodontics , Hacettepe University, Sihhiye, Ankara, 06100, Turkey.

Introduction: To evaluate topographic changes of enamel surface in 3-dimensional after different debonding methods of aligner attachments formed with 2 different composite resins.

Methods: Vertical rectangular attachments were created on 88 premolar teeth and divided into two composite resin groups (Group 1:flowable, Group 2:packable) (N = 44). These were then divided into two subgroups (N = 22) using different debonding methods.

View Article and Find Full Text PDF

Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.

View Article and Find Full Text PDF

Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography.

Sensors (Basel)

January 2025

Department of Biomedical and Robotics Engineering, Incheon National University, Incheon 22012, Republic of Korea.

With the rise of modern healthcare monitoring, heart rate (HR) estimation using remote photoplethysmography (rPPG) has gained attention for its non-contact, continuous tracking capabilities. However, most HR estimation methods rely on stable, fixed sampling intervals, while practical image capture often involves irregular frame rates and missing data, leading to inaccuracies in HR measurements. This study addresses these issues by introducing low-complexity timing correction methods, including linear, cubic, and filter interpolation, to improve HR estimation from rPPG signals under conditions of irregular sampling and data loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!