Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, it is unclear whether pediatric multiple sclerosis (PMS) is a pathoetiologically homogeneous disease phenotype due to clinical and epidemiological differences between early and late onset PMS (EOPMS and LOPMS). Consequently, the question was raised whether diagnostic guidelines need to be complemented by specific EOPMS markers. To search for such markers, we analyzed cerebral MRI images acquired with standard protocols using computer-based classification techniques. Specifically, we applied classification algorithms to gray (GM) and white matter (WM) tissue probability parameters of small brain regions derived from T2-weighted MRI images of EOPMS patients (onset <12 years), LOPMS patients (onset ≥12 years), and healthy controls (HC). This was done for PMS subgroups matched for disease duration and participant age independently. As expected, maximal diagnostic information for distinguishing PMS patients and HC was found in a periventricular WM area containing lesions (87.1% accuracy, p < 2.2 × 10(-5)). MRI-based biomarkers specific for EOPMS were identified in prefrontal cortex. Specifically, a coordinate in middle frontal gyrus contained maximal diagnostic information (77.3%, p = 1.8 × 10(-4)). Taken together, we were able to identify biomarkers reflecting pathognomonic processes specific for MS patients with very early onset. Especially GM involvement in the separation between PMS subgroups suggests that conventional MRI contains a richer set of diagnostically informative features than previously assumed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310929 | PMC |
http://dx.doi.org/10.1016/j.nicl.2014.06.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!