Split-dose menthol-enhanced PEG vs PEG-ascorbic acid for colonoscopy preparation.

World J Gastroenterol

Ala I Sharara, Ali H Harb, Fayez S Sarkis, Jean M Chalhoub, Rami Badreddine, Fadi H Mourad, Mahmoud Othman, Omar Masri, Division of Gastroenterology, Department of Internal Medicine, American University of Beirut Medical Center, 11-0236/16-B Beirut, Lebanon.

Published: February 2015

Aim: To compare the efficacy and palatability of 4 L polyethylene glycol electrolyte (PEG) plus sugar-free menthol candy (PEG + M) vs reduced-volume 2 L ascorbic acid-supplemented PEG (AscPEG).

Methods: In a randomized controlled trial setting, ambulatory patients scheduled for elective colonoscopy were prospectively enrolled. Patients were randomized to receive either PEG + M or AscPEG, both split-dosed with minimal dietary restriction. Palatability was assessed on a linear scale of 1 to 5 (1 = disgusting; 5 = tasty). Quality of preparation was scored by assignment-blinded endoscopists using the modified Aronchick and Ottawa scales. The main outcomes were the palatability and efficacy of the preparation. Secondary outcomes included patient willingness to retake the same preparation again in the future and completion of the prescribed preparation.

Results: Overall, 200 patients were enrolled (100 patients per arm). PEG + M was more palatable than AscPEG (76% vs 62%, P = 0.03). Completing the preparation was not different between study groups (91% PEG + M vs 86% AscPEG, P = 0.38) but more patients were willing to retake PEG + M (54% vs 40% respectively, P = 0.047). There was no significant difference between PEG + M vs AscPEG in adequate cleansing on both the modified Aronchick (82% vs 77%, P = 0.31) and the Ottawa scale (85% vs 74%, P = 0.054). However, PEG + M was superior in the left colon on the Ottawa subsegmental score (score 0-2: 94% for PEG + M vs 81% for AscPEG, P = 0.005) and received significantly more excellent ratings than AscPEG on the modified Aronchick scale (61% vs 43%, P = 0.009). Both preparations performed less well in afternoon vs morning examinations (inadequate: 29% vs 15.2%, P = 0.02).

Conclusion: 4 L PEG plus menthol has better palatability and acceptability than 2 L ascorbic acid- PEG and is associated with a higher rate of excellent preparations; Clinicaltrial.gov identifier: NCT01788709.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323474PMC
http://dx.doi.org/10.3748/wjg.v21.i6.1938DOI Listing

Publication Analysis

Top Keywords

peg
13
modified aronchick
12
peg ascpeg
8
ascpeg
6
preparation
5
patients
5
split-dose menthol-enhanced
4
menthol-enhanced peg
4
peg peg-ascorbic
4
peg-ascorbic acid
4

Similar Publications

Although the Diels-Alder reaction (DA) has garnered significant attention due to its numerous advantages, its long reaction time is a drawback. Herein, we investigated the effects of polarity difference on DA using Layer-by-Layer (LbL) films comprising polycationic polyallylamine hydrochloride and polyanionic poly (styrenesulfonic acid-co-furfuryl methacrylate) [poly (SS--FMA)] as the reaction environment. First, furan composition in poly (SS--FMA) was adjusted to be 19 mol% to achieve good water solubility and layer deposition.

View Article and Find Full Text PDF

Size-dependent Nanoparticle Accumulation In Venous Malformations.

J Vasc Anom (Phila)

December 2024

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).

View Article and Find Full Text PDF

Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!