Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329557 | PMC |
http://dx.doi.org/10.1038/srep08490 | DOI Listing |
Biosensors (Basel)
December 2024
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.
The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Sichuan University, Department of Chemistry, wangjiang road NO.64, 610065, Chengdu, CHINA.
Enhancing the conversion efficiency of all-solid-state lasers through the rational design of crystal materials with superior linear and nonlinear optical (NLO) properties remains a formidable challenge. Herein, we present a novel approach to optimizing these properties in KBe2BO3F2 (KBBF)-analog crystals via functional group self-polymerization. This strategy led to the synthesis of two new optical crystals: noncentrosymmetric CsAs2O3Br and centrosymmetric CsAs4O6Br.
View Article and Find Full Text PDFUtilizing LiBO, -BaBO crystals, and an Nd:YVO laser with an average power of 70 W and a repetition rate of 100 kHz, we systematically demonstrated and operated high-repetition-rate, high-power, all-solid-state, UV, and deep-UV picosecond laser sources via high-efficiency third-, fourth-, and fifth-harmonic generation (THG, FHG, and FiHG). The maximum output powers of the radiation at 355, 266, and 213 nm reached 31.2, 10.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Shenzhen Key Laboratory of Solid-State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic Thermal-Electrical Energy Materials and Devices, Institute of Major Scientific Facilities for New Materials, Southern University of Science and Technology, 518055, Shenzhen, P. R. China.
Solid electrolytes (SEs) in all-solid-state batteries (ASSBs) are garnering considerable attention for their potential applications in next-generation energy storage systems. Amorphous SEs with dual-anion hold great promise for achieving favorable performance, such as high ionic conductivity and good compatibility with electrodes within ASSBs. Here, we discover a family of amorphous nitride-halide SEs, LiMClN (M=Ta or La, 1≤3x≤1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, Garching 85748, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!