A major complication for diabetic patients is chronic wounds due to impaired wound healing. It is well documented that visible red wavelengths can accelerate wound healing in diabetic animal models and patients. In vitro and in vivo diabetic models were used to investigate the effects of organic light emitting diode (OLED) irradiation on cellular function and cutaneous wound healing. Human dermal fibroblasts were cultured in hyperglycemic medium (glucose concentration 180 mM) and irradiated with an OLED (623 nm wavelength peak, range from 560 to 770 nm, power density 7 or 10 mW/cm2 at 0.2, 1, or 5 J/cm2). The OLED significantly increased total adenosine triphosphate concentration, metabolic activity, and cell proliferation compared with untreated controls in most parameters tested. For the in vivo experiment, OLED and laser (635 ± 5 nm wavelength) treatments (10 mW/cm2 , 5 J/cm2 daily for a total of seven consecutive days) for cutaneous wound healing were compared using a genetic, diabetic rat model. Both treatments had significantly higher percentage of wound closure on day 6 postinjury and higher total histological scores on day 13 postinjury compared with control. No statistical difference was found between the two treatments. OLED irradiation significantly increased fibroblast growth factor-2 expression at 36-hour postinjury and enhanced macrophage activation during initial stages of wound healing. In conclusion, the OLED and laser had comparative effects on enhancing diabetic wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12258DOI Listing

Publication Analysis

Top Keywords

wound healing
28
cutaneous wound
12
organic light
8
light emitting
8
emitting diode
8
wound
8
oled irradiation
8
10 mw/cm2 5 j/cm2
8
oled laser
8
day postinjury
8

Similar Publications

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.

Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.

View Article and Find Full Text PDF

Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review.

Int J Biol Macromol

January 2025

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.

View Article and Find Full Text PDF

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

Introduction: Hyperthermic intraperitoneal chemotherapy (HIPEC) is a current treatment option for peritoneal carcinosis (PC) after cytoreductive surgery (CRS). Genital skin alterations are rare complications reported variously after HIPEC using Mitomycin-C.

Presentation Of Case: A 42-year-old man with a diagnosis of stage IV colorectal cancer underwent CRS and HIPEC using mitomycin-C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!