The two paralogue phoN (phosphinothricin acetyl transferase) genes of Pseudomonas putida encode functionally different proteins.

Environ Microbiol

Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco, Madrid, 28049, Spain.

Published: September 2015

Phosphinothricin (PPT) is a non-specific inhibitor of glutamine synthetase that has been employed as herbicide for selection of transgenic plants expressing cognate resistance genes. While the soil bacterium Pseudomonas putida KT2440 has been generally considered PPT-sensitive, inspection of its genome sequence reveals the presence of two highly similar open reading frames (PP_1924 and PP_4846) encoding acetylases with a potential to cause tolerance to the herbicide. To explore this possibility, each of these genes (named phoN1 and phoN2) was separately cloned and their activities examined in vivo and in vitro. Genetic and biochemical evidence indicated that phoN1 encodes a bona fide PPT-acetyl transferase, the expression of which suffices to make P. putida tolerant to high concentrations of the herbicide. In contrast, PhoN2 does not act on PPT but displays instead activity against methionine sulfoximine (MetSox), another glutamine synthetase inhibitor. When the geometry of the substrate-binding site of PhoN1 was grafted with the equivalent residues of the predicted PhoN2 structure, the resulting protein increased significantly MetSox resistance of the expression host concomitantly with the loss of activity on PPT. These observations uncover intricate biochemical and genetic interactions among soil microorganisms and how they can be perturbed by exposure to generic herbicides in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12798DOI Listing

Publication Analysis

Top Keywords

glutamine synthetase
8
paralogue phon
4
phon phosphinothricin
4
phosphinothricin acetyl
4
acetyl transferase
4
transferase genes
4
genes pseudomonas
4
pseudomonas putida
4
putida encode
4
encode functionally
4

Similar Publications

Ammonia-Assimilating Bacteria Promote Wheat () Growth and Nitrogen Utilization.

Microorganisms

December 2024

Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.

Nitrogen fertilizers in agriculture often suffer losses. Ammonia-assimilating bacteria can immobilize ammonia and reduce these losses, but they have not been used in agriculture. This study identified an ammonia-assimilating strain, sp.

View Article and Find Full Text PDF

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek.

Plant Physiol Biochem

January 2025

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.

View Article and Find Full Text PDF

Glutamine Synthetase: Diverse Regulation and Functions of an Ancient Enzyme.

Biochemistry

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States.

Glutamine synthetase (GS) is a ubiquitous enzyme central to nitrogen metabolism, catalyzing the ATP-dependent formation of glutamine from glutamate and ammonia. Positioned at the intersection of nitrogen metabolism with carbon metabolism, the activity of GS is subject to sophisticated regulation. While the intricate regulatory pathways that govern GS were established long ago, recent work has demonstrated that homologues are controlled by multiple distinct regulatory patterns, such as the metabolite induced oligomeric state formation in archaeal GS by 2-oxoglutarate.

View Article and Find Full Text PDF

Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!