A method is described for quantification of the beef tenderness marker, calpastatin, in meat samples by amperometric detection. Using a novel bovine recombinant partial calpastatin protein as standard antigen a low detection limit of 0.2 ng/mL was achieved. The influence of the complex matrix was minimised by heat pretreatment and dilution of the samples prior to detection of calpastatin. The relative error between the direct sample measurement and standard addition methods was 5.89%, confirming the accuracy of the developed amperometric immunoassay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2012.01.065DOI Listing

Publication Analysis

Top Keywords

amperometric immunoassay
8
calpastatin meat
8
tenderness marker
8
indirect non-competitive
4
non-competitive amperometric
4
immunoassay accurate
4
accurate quantification
4
calpastatin
4
quantification calpastatin
4
meat tenderness
4

Similar Publications

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

The global expand of SARS-CoV-2 has highlighted the importance of early and rapid detection to control the spread of a pandemic. In this study, specific and high-affinity monoclonal antibodies (mAbs) were developed against the conserved nucleocapsid protein of the virus among variants. Appropriate antibody pairs were selected to develop a lateral flow immunoassay (LFIA) and an unconventional application of an amperometric biosensor using unmodified screen-printed electrodes and external magnetic bead preparation.

View Article and Find Full Text PDF

The first dual immunosensor is reported for the determination of IL-12 and IL-23, two relevant biomarkers of Crohn's disease (CD). The strategy relies on the selective capture of the targets by the respective antibodies which were covalently immobilized onto SPCEs modified with crystalline nanocellulose (CNC) and multi-walled carbon nanotubes (MWCNTs) followed by conjugation with a detector antibody labelled with poly-HRP-Strept and amperometric transduction using the HO/HQ system. The combination of CNC, a nanomaterial scarcely exploited in immunosensing, with MWCNTs enables the preparation of a novel dual immunosensor for the determination of CD biomarkers in clinical samples, including faeces.

View Article and Find Full Text PDF

Interleukin-6 (IL6) is a cytokine mainly involved in inflammatory processes associated with various diseases, from rheumatoid arthritis and pathogen-caused infections to cancer, where malignant cells exhibit high proliferation and overexpression of cytokines, including IL6. Furthermore, IL6 plays a fundamental role in detecting and differentiating tumor cells, including colorectal cancer (CRC) cells. Therefore, given its range of biological activities and pathological role, IL6 determination has been claimed for the diagnosis/prognosis of immune-mediated diseases.

View Article and Find Full Text PDF

Several diseases of the oral cavity are related to compositional and functional shifts in the oral microbiome. The analysis of saliva is an attractive alternative for the diagnosis and prognosis of these diseases. Samples can be obtained by no invasive procedures and processing is relatively simple.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!