For human complex traits, non-additive genetic variation has been invoked to explain "missing heritability," but its discovery is often neglected in genome-wide association studies. Here we propose a method of using SNP data to partition and estimate the proportion of phenotypic variance attributed to additive and dominance genetic variation at all SNPs (hSNP(2) and δSNP(2)) in unrelated individuals based on an orthogonal model where the estimate of hSNP(2) is independent of that of δSNP(2). With this method, we analyzed 79 quantitative traits in 6,715 unrelated European Americans. The estimate of δSNP(2) averaged across all the 79 quantitative traits was 0.03, approximately a fifth of that for additive variation (average hSNP(2) = 0.15). There were a few traits that showed substantial estimates of δSNP(2), none of which were replicated in a larger sample of 11,965 individuals. We further performed genome-wide association analyses of the 79 quantitative traits and detected SNPs with genome-wide significant dominance effects only at the ABO locus for factor VIII and von Willebrand factor. All these results suggest that dominance variation at common SNPs explains only a small fraction of phenotypic variation for human complex traits and contributes little to the missing narrow-sense heritability problem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375616 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2015.01.001 | DOI Listing |
Am J Bot
January 2025
Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA.
Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.
Methods: Seed representing two species, Dalea candida and D.
BMC Genom Data
January 2025
Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250103, Shandong, China.
Objectives: Toona sinensis, commonly known as Chinese toon, is a perennial woody plant with significant economic and ecological importance. This study employed whole-genome resequencing of 180 T. sinensis samples collected from Shandong to analyze genetic variation and diversity, ultimately identifying 18,231 high-quality SNPs after rigorous quality control and linkage disequilibrium pruning.
View Article and Find Full Text PDFEMBO J
January 2025
College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.
Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.
Nat Genet
January 2025
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!