A novel highly C3 selective metal free trifluoroethylation of indoles using 2,2,2-trifuoroethyl(mesityl)-iodonium triflate was developed. The methodology enables the introduction of a trifluoroethyl group in a fast and efficient reaction under mild conditions with high functional group tolerance. Beyond the synthetic developments, quantum chemical calculations provide a deeper understanding of the transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc00519a | DOI Listing |
Am J Ind Med
January 2025
Icahn School of Medicine at Mount Sinai, Selikoff Centers for Occupational Health, New York, New York, USA.
Background: Housecleaning work has been characterized as precarious employment with unstable work hours, arbitrary and low pay and benefits, and exposures to chemical, physical, and psychosocial stressors. Understanding how interpersonal power dynamics between workers and clients, a component of precarious work, contributes to work exposures can inform and improve prevention programs.
Methods: We used reflexive thematic analysis of data from seven focus groups with Latinx immigrant housecleaners in New York City to explore workers' experience of interpersonal power dynamics with their clients-whom they referred to as their "employers"-and its influences on working conditions.
JMIR Med Inform
January 2025
Department of Public Administration, Law School, Hangzhou City University, Hangzhou, China.
The health care industry is currently going through a transformation due to the integration of technologies and the shift toward value-based health care (VBHC). This article explores how digital health solutions play a role in advancing VBHC, highlighting both the challenges and opportunities associated with adopting these technologies. Digital health, which includes mobile health, wearable devices, telehealth, and personalized medicine, shows promise in improving diagnostic accuracy, treatment options, and overall health outcomes.
View Article and Find Full Text PDFEnviron Int
January 2025
Institute of Atmospheric Environment, Chinese Academy of Environmental Planning, Beijing 100012, China; Center of Synergistic Control for Reducing Pollution and Carbon Emissions, Chinese Academy of Environmental Planning, Beijing 100012, China. Electronic address:
To address the concern of optimization problem of China's PM control and the limitation of computational efficiencies for traditional air quality models, we developed an integrated analysis framework to efficiently establish the identification and cost-benefit assessment of PM control pathways in China by constructing a rapid PM exposure response method based on the high-order decoupled direct method (HDDM) and coupling the sequential least square algorithm (SLSQP) and health impact assessment model. Six emission reduction scenarios with varying decision preferences were analyzed. Our study provides a methodological approach for the rapid optimization of emission pathways of major air pollutants in China with flexible options in terms of objectives and constraints, fully considering the diverse differences in environmental, health, and economic impacts among different pollution sources simultaneously.
View Article and Find Full Text PDFChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou Mining Safety Science Research Institute Co., Ltd, Guiyang, 550025, China.
To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!