AI Article Synopsis

  • Biogenic aerosols, especially from bacteria in seawater, play a vital role in atmospheric processes, yet their aerosolization is not well understood.
  • A study in Kongsfjorden, Svalbard, analyzed bacterial diversity in both seawater and generated aerosols, revealing significant differences in community composition.
  • Findings showed that while some bacterial types from seawater were present in aerosols, certain types were either enriched or underrepresented, suggesting that aerosolization selectively favors specific bacterial populations, potentially influencing atmospheric effects.

Article Abstract

Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1758-2229.12273DOI Listing

Publication Analysis

Top Keywords

seawater
9
aerosols
9
marine bacteria
8
atmospheric processes
8
seawater aerosols
8
bacteria
5
seawater mesocosm
4
mesocosm experiments
4
experiments arctic
4
arctic uncover
4

Similar Publications

Developing durably active catalysts to tackle harsh voltage polarization and seawater corrosion is pivotal for efficient solar-to-hydrogen (STH) conversion, yet remains a challenge. We report a durably active catalyst of NiCr-layered double hydroxide (RuldsNiCr-LDH) with highly exposed Ni-O-Ru units, in which low-loading Ru (0.32 wt%) is locked precisely at defect lattice site (Rulds) by Ni and Cr.

View Article and Find Full Text PDF

Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown.

View Article and Find Full Text PDF

Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs.

Environ Microbiol

December 2024

CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France.

Phosphorus is an essential component of numerous macromolecules and is vital for life. Its availability significantly influences primary production, particularly in oligotrophic environments. Marine diazotrophic cyanobacteria, which play key roles in biogeochemical cycles through nitrogen fixation (N fixation), have adapted to thrive in phosphate (P)-poor areas.

View Article and Find Full Text PDF

Hydrogen production from seawater electrolysis.

Chem Commun (Camb)

December 2024

School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China.

The world's energy landscape is undergoing a significant transformation, driven by the urgent need to address the climate issues and growing sustainable energy demand. Hydrogen can be produced from renewable sources and may play a crucial role in the zero-carbon economy, which is regarded as a promising alternative to fossil fuels. Currently, hydrogen production water electrolysis still relies on high-purity water, while seawater electrolysis benefits from the abundance of seawater, which can be particularly beneficial for water-scarce countries, and deep-sea applications, such as floating platforms or islands.

View Article and Find Full Text PDF

Aquaculture stands as the fastest-growing food fish sector, expected to satisfy global demand for aquatic products. However, its expansion has led to disease emergence, adversely affecting both production and biodiversity. In response, since the mid-1990s the World Organisation for Animal Health (WOAH) has developed initiatives, notably the Aquatic Animal Health Code and the Manual of Diagnostic Tests for Aquatic Animals, aimed at harmonising health standards for international trade in aquatic animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!