Gilthead sea bream juveniles were fed different doses (0, 50, 100, 200, 300 ppm) of NEXT ENHANCE®150 (NE) for 9 weeks. Feed gain ratio (FGR) was improved by a 10% with all the doses, but feed intake decreased in a dose dependent manner. The optimum inclusion level to achieve maximum growth was set at 100 ppm. The hepatosomatic index did not vary and only at the highest dose, viscerosomatic and splenosomatic indexes were significantly decreased. No significant changes were found in haematological parameters, plasma biochemistry, total antioxidant capacity and respiratory burst. In a second trial, NE was given at 100 ppm alone (D1) or in combination with the prebiotic PREVIDA® (0.5%) (PRE) (D2) for 17 weeks. There were no differences in the growth rates, and FGR was equally improved for D1 and D2. No significant changes in haematology and plasma antioxidant capacity were detected. The histological examination of the liver and the intestine showed no outstanding differences in the liver, but the number of mucosal foldings appeared to be higher in D1 and D2 vs CTRL diet and the density of enterocytes and goblet cells also appeared higher, particularly in the anterior intestine. A 87-gene PCR-array was constructed based on our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) and applied to samples of anterior (AI) and posterior (PI) intestine. It included 54 new gene sequences and other sequences as markers of cell differentiation and proliferation, intestinal architecture and permeability, enterocyte mass and epithelial damage, interleukins and cytokines, pattern recognition receptors (PRR), and mitochondrial function and biogenesis. More than half of the studied genes had significantly different expression between AI and PI segments. The functional significance of this differential tissue expression is discussed. The experimental diets induced significant changes in the expression of 26 genes. The intensity of these changes and the number of genes that were significantly regulated were higher at PI than at AI. At PI, both diets invoked a clear down-regulation of genes involved in cell differentiation and proliferation, some involved in cell to cell communication, cytokines and several PRR. By contrast, up-regulation was mostly found for genes related to enterocyte mass, cell epithelial damage and mitochondrial activity at AI. The changes were of the same order for D1 and D2, except for fatty acid-binding proteins 2 and 6 and the PRR fucolectin, which were higher in D2 and D1 fed fish, respectively. Thus, NE alone or in combination with PRE seems to induce an anti-inflammatory and anti-proliferative transcriptomic profile with probable improvement in the absorptive capacity of the intestine that would explain the improved FGR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2015.01.039DOI Listing

Publication Analysis

Top Keywords

gilthead sea
8
sea bream
8
100 ppm
8
antioxidant capacity
8
appeared higher
8
cell differentiation
8
differentiation proliferation
8
enterocyte mass
8
epithelial damage
8
involved cell
8

Similar Publications

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP).

View Article and Find Full Text PDF

This study investigates the seasonal variations in the elemental composition of five economically valuable fish species from Bozcaada, North Aegean: red seabream (), gilthead seabream (), saddled seabream (), white seabream (), and common dentex (), with a focus on both essential minerals and toxic metals. Fish samples ( = 10 per species per season) were collected across four seasons, and their weights and lengths were recorded. The concentrations of elements such as calcium, potassium, magnesium, phosphorus, copper, iron, manganese, zinc, chromium, nickel, selenium, cadmium, and mercury were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Co-products from the frozen fish processing industry often lead to financial losses. Therefore, it is essential to transform these co-products into profitable goods. This study explores the production of fish protein hydrolysates (FPH) from three co-products: the heads and bones of black scabbardfish (), the carcasses of gilthead seabream (), and the trimmings of Nile perch ().

View Article and Find Full Text PDF

One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by feeding a conventional feed rich in FM protein (FM diet) versus an experimental feed rich in plant protein (PP) and low FM inclusion (PP diet), in 20 different families of gilthead sea bream () was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!