AI Article Synopsis

  • Solid lipids are non-toxic additives that help improve the delivery and taste of poorly soluble drugs, like metformin hydrochloride.
  • The study explores the challenges of particle agglomeration during the spheronization process, particularly when using varying lipid mixtures, which can stick to equipment and reduce quality.
  • An innovative setup using infrared light was developed to maintain optimal temperatures during spheronization, ultimately producing high-quality lipid pellets without sticking issues even after extended processing.

Article Abstract

Solid lipids are non-toxic excipients, which are known to potentially enhance delivery and bioavailability of poorly water-soluble drugs and moreover to mask unpleasant tasting drugs. Multiple unit matrix dosage forms based on solid lipids, such as lipid pellets, can be obtained by solvent-free cold extrusion and spheronization. This method presents advantages in the processing of sensitive substances, such as low process temperatures, the absence of solvents and a drying step. However, the material temperature during the spheronization showed to be critical so far. The process leads to increased material temperatures, causing particle agglomeration and discontinuity of the spheronization. In the present study, extrudates of 0.5mm in diameter containing metformin hydrochloride, and either semisynthetic hard fat (Witocan® 42/44) or different ternary mixtures based on hard fat, glyceryl trimyristate, and glyceryl distearate, were spheronized. By applying common process parameters, particle agglomeration or material stickiness on equipment walls was observed in preliminary experiments after 2-6min, depending on the lipid composition. Therefore, an innovative instrumental setup to control the spheronization process was developed utilizing an infrared light source, which was positioned over the particle bed. The new approach enabled a spheronization process that reached the desired spheronization temperature after 2-3min and neither particle agglomeration nor material adherence occurred even after longer process times. The different formulations, even those based on high amount of solid lipids, were successfully spheronized over 15min, resulting in small diameter lipid pellets with smooth surface and aspect ratios below 1.3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2015.02.004DOI Listing

Publication Analysis

Top Keywords

solid lipids
12
particle agglomeration
12
critical process
8
process parameters
8
lipid pellets
8
hard fat
8
agglomeration material
8
spheronization process
8
spheronization
7
process
7

Similar Publications

On the formation and stability mechanisms of diverse lipid-based nanostructures for drug delivery.

Adv Colloid Interface Sci

January 2025

Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.

In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.

View Article and Find Full Text PDF

Aim: Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.

Methods: Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.

View Article and Find Full Text PDF

Preparation and characterization of tildipirosin-loaded solid lipid nanoparticles for the treatment of intracellular infections.

Biomater Sci

January 2025

School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.

To enhance the antibacterial efficacy of tildipirosin against (S.A.) infections, optimized solid lipid nanoparticles loaded with tildipirosin (SLN-TD) were developed, using docosanoic acid (DA), octadecanoic acid (OA), hexadecanoic acid (HA), and tetradecanoic acid (TA) as lipid components.

View Article and Find Full Text PDF

Reducing butter firmness with chemically esterified butter oil.

JDS Commun

January 2025

Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.

In a consumer-centric environment, food products are created and focused on the consumer's experience and desires. One important food product used around the world is butter. Consumers expect that when they take their butter out of the refrigerator, it will be able to spread nicely and evenly; however, with conventional butter, which does not include any added vegetable oils, achieving a soft, spreadable butter is rare.

View Article and Find Full Text PDF

Aim: The study aimed to formulate solid lipid nanoparticles (SLNs) for the transdermal delivery of PPL to improve skin retention and efficacy.

Materials And Method: The particle size distribution of SLNs was determined and the morphology of SLNs was also analyzed by SEM. , and evaluations were done for PPL loaded SLN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!