Age- and gender-related changes in pediatric thoracic vertebral morphology.

Spine J

School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Bossone 718, Philadelphia, PA 19104, USA. Electronic address:

Published: May 2015

Background Context: Although it is well known that the growth of thoracic spine changes significantly with age, gender, and vertebral level in the skeletally normal pediatric population, there have been very few studies attempting to comprehensively quantify such variations. Biomechanical and computational models of the growing thoracic spine have provided insight into safety and efficacy of surgical and noninvasive treatments for spinal deformity. However, many of these models only consider growth of the vertebral body and pedicles and assume a consistent growth rate for these structures across thoracic levels.

Purpose: To enhance the understanding of age-, gender-, and level-related growth dynamics of the pediatric thoracic spine by comprehensively quantifying the thoracic vertebral morphology for subjects between 1 and 19 years.

Study Design: A retrospective computed tomography (CT) image analysis study.

Methods: Retrospectively obtained chest CT scans from 100 skeletally normal pediatric subjects (45 males and 55 females between the ages 1 and 19 years) were digitally reconstructed using medical imaging software. Surface point clouds of thoracic vertebrae were extracted and 26 vertebral geometry parameters were measured using 25 semiautomatically identified surface landmarks and anatomical slices from each thoracic vertebra (T1-T12). Data were assessed for normality, symmetry, and age-, gender-, and level-related differences in geometric measures and growth. Linear regression was performed to estimate of the rates of variation with age for each measurement.

Results: Asymmetries (bilateral, superior-inferior, and anteroposterior) were observed in vertebral body heights, end plate widths and depths, and interfacet widths. Within genders, significant interlevel differences were observed for all geometric measures, and significant differences in the rates of growth were found across thoracic levels for most parameters. Significant differences were observed between genders for pedicle, spinous process, and facet measurements. Growth rates of the pedicles and vertebral bodies were also found to vary significantly between genders.

Conclusions: The rates of growth for most thoracic vertebral structures varied between genders and across vertebral levels. These growth rates followed trends similar to those of their associated vertebral dimensions and this indicates that, across levels and between genders, larger vertebral structures grow at faster rates, whereas smaller structures grow at a slower rate. Such level- and gender-specific information could be used to inform clinical decisions about spinal deformity treatment and adapted for use in biomechanical and computational modeling of thoracic growth and growth modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2015.01.016DOI Listing

Publication Analysis

Top Keywords

thoracic vertebral
12
growth thoracic
12
thoracic spine
12
thoracic
11
vertebral
11
growth
11
pediatric thoracic
8
vertebral morphology
8
skeletally normal
8
normal pediatric
8

Similar Publications

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease that affects the spine and peripheral joints, often leading to kyphosis, joint stiffness, and even ankylosis. Sagittal parameters, such as total thoracic kyphosis (TTK), thoracic kyphosis (TK), major thoracic kyphosis (MTK), and thoracolumbar kyphosis (TLK), are crucial indices for evaluating spinal alignment in AS patients and can reflect disease progression. This study aims to explore the relationship between bone mineral density (BMD), sagittal parameters, and joint ankylosis in AS patients.

View Article and Find Full Text PDF

[Current surgical treatment concepts for traumatic fractures of the thoracic and lumbar spine with osteoporotic bone substance].

Unfallchirurgie (Heidelb)

January 2025

Klinik für Unfallchirurgie, Orthopädie, Hand- & Wiederherstellungschirurgie, München Klinik Harlaching, München, Deutschland.

Osteoporosis-related vertebral fractures are among the most frequent fracture entities in geriatric patients. They are associated with far-reaching individual and socioeconomic consequences. Adequate diagnostics and treatment are therefore essential.

View Article and Find Full Text PDF

Purpose: To evaluate the reliability and validity of spinal alignment measurements in the raised arm standing posture using a smartphone app.

Background: An inclinometer is a reliable tool for measuring spinal alignment. Measurement of static standing posture spinal curvature angles using smartphone inclinometer applications has been investigated in the lumbar spine but has not been reported for the thoracic spine.

View Article and Find Full Text PDF

This descriptive longitudinal study aims to assess the risk factors for severe thoracic and lumbar vertebral compression fractures before and after surgery, contributing to preventive knowledge enhancement in communities and effective treatment management. The study involved 34 patients diagnosed with thoracic and lumbar vertebral compression fractures requiring surgery with bio-cement-augmented pedicle screws between June 2021 and June 2022. Postoperative complications, notably adjacent segment injury, were monitored, and patients received osteoporosis management post-surgery.

View Article and Find Full Text PDF

Background: Degenerative lumbar scoliosis (DLS) represents a distinct subset of adult spinal deformity, frequently co-occurring with thoracolumbar kyphosis (TLK) in the sagittal plane. TLK is typically viewed as detrimental in degenerative spinal conditions and has been linked to increased pain severity and a higher prevalence of mechanical complications (MC) as previously reported. The present study aimed to identify the risk factors associated with the development of MC in patients with DLS and concomitant TLK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!