Purpose: To investigate whether long-term protection from light exposure affects the rate of disease progression in patients with autosomal recessive Stargardt disease (STGD1), measured using fundus autofluorescence imaging.

Design: Longitudinal, retrospective, interventional case series.

Methods: Five patients with Stargardt disease protected 1 eye from light exposure by applying a black contact lens during waking hours for ≥12 months. Disease progression was followed by performing autofluorescence imaging at semi-regular intervals. Longitudinal changes in autofluorescence were studied by evaluating areas of decreased autofluorescence and areas of increased autofluorescence as a measure of retinal pigment epithelium damage and lipofuscin accumulation, respectively.

Results: We observed less progression of decreased autofluorescence in 4 out of 5 light-protected eyes relative to their respective nonprotected eyes. The progression of increased autofluorescence, on the other hand, was highly variable and did not respond consistently to treatment.

Conclusions: Areas of decreased autofluorescence may serve as a useful biomarker for measuring the progression of Stargardt disease. The reduced progression of decreased autofluorescence in the light-protected eyes suggests that light deprivation might be beneficial in patients with Stargardt disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajo.2015.02.004DOI Listing

Publication Analysis

Top Keywords

stargardt disease
20
decreased autofluorescence
16
patients stargardt
12
autofluorescence
9
light deprivation
8
light exposure
8
disease progression
8
areas decreased
8
increased autofluorescence
8
progression decreased
8

Similar Publications

Background: Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis.

View Article and Find Full Text PDF

A diagnosis of age-related macular degeneration (AMD) may have a significant impact on a patient's life. Therefore, it is important to consider differential diagnoses, as these can differ considerably from AMD regarding prognosis, inheritance, monitoring and therapy. Differential diagnoses include other macular diseases with drusen, drusen-like changes, monogenic retinal dystrophies, as well as a wide range of other, often rare macular diseases.

View Article and Find Full Text PDF

Modifiers and their impact on inherited retinal diseases: a review.

Ophthalmic Genet

January 2025

Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA.

Background: The phenotypic variability of inherited conditions can be due to several factors including environmental, epigenetic, and genetic. One of those genetic factors is the presence of modifying loci which alter the phenotypic expression of a primary disease or phenotype-causing variant. Modifiers are known to affect penetrance, dominance, expressivity, and pleiotropy of disease.

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Quercetin Alleviates All--Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling.

Int J Mol Sci

December 2024

Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.

All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!