The contaminant release from estuarine sediment due to pH changes was investigated using a modified CEN/TS 14429 pH-dependence leaching test. The test is performed in the range of pH values of 0-14 using deionised water and seawater as leaching solutions. The experimental conditions mimic different circumstances of the marine environment due to the global acidification, carbon dioxide (CO2) leakages from carbon capture and sequestration technologies, and accidental chemical spills in seawater. Leaching test results using seawater as leaching solution show a better neutralisation capacity giving slightly lower metal leaching concentrations than when using deionised water. The contaminated sediment shows a low base-neutralisation capacity (BNCpH 12 = -0.44 eq/kg for deionised water and BNCpH 12 = -1.38 eq/kg for seawater) but a high acid-neutralisation capacity when using deionised water (ANCpH 4 = 3.58 eq/kg) and seawater (ANCpH 4 = 3.97 eq/kg). Experimental results are modelled with the Visual MINTEQ geochemical software to predict metal release from sediment using both leaching liquids. Surface adsorption to iron- and aluminium-(hydr)oxides was applied for all studied elements. The consideration of the metal-organic matter binding through the NICA-Donnan model and Stockholm Humic Model for lead and copper, respectively, improves the former metal release prediction. Modelled curves can be useful for the environmental impact assessment of seawater acidification due to its match with the experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-015-0133-z | DOI Listing |
Beilstein J Nanotechnol
December 2024
School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India.
This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 602 00, Brno, Czech Republic.
We investigated the production of highly reactive oxygen species (ROS) in solutions undergoing treatment using CaviPlasma (CP) technology. This technology combines plasma discharge with hydrodynamic cavitation. This study focused on factors such as pH, conductivity, presence of salts and organic matter affecting ROS formation and their stability in solutions.
View Article and Find Full Text PDFJ Chem Ecol
December 2024
School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North, 4474, New Zealand.
The release of allelochemicals is one of the contributing factors to the success of invasive plants in their non-native ranges. It has been hypothesised that the impact of chemicals released by a plant on its neighbours is shaped by shared coevolutionary history, making natives more susceptible to "new" chemicals released by introduced plant species (novel weapons hypothesis). We explored this hypothesis in a New Zealand system where the two invasive plants of European origin, Cytisus scoparius (Scotch broom) and Calluna vulgaris (heather) cooccur with natives like Chionochloa rubra (red tussock) and Leptospermum scoparium (mānuka).
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:
Hypertension is the most common pregnancy disorder and can lead to life-threatening conditions for both mother and fetus. However, managing this condition with oral and intravenous labetalol can be challenging, highlighting the need for alternative delivery methods. This study presents, for the first time, the development of novel powder-based reservoirs incorporated with hydrogel-forming microarray patches (MAPs) to facilitate the transdermal delivery of labetalol hydrochloride (HCl).
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK.
Monitoring heavy metals in vegetation near mining or industrial sites is crucial for detecting plant contamination; requiring discrimination between metals adhered to foliar surfaces from the internal concentrations. We investigated key factors that might contribute to lead (Pb) accumulation in leaves of local vegetation near a Pb mine: (i) distance from the pollutant source, (ii) morphological characteristics of leaf surfaces, (iii) their susceptibility to Pb loss by washing, and (iv) the effect of contrasting washing reagents in Pb removal. Native plant species were sampled at three field locations, possessing different leaf surface morphologies: glabrous (smooth), resinous (waxy) and hirsute (hairy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!