Purpose: To compare the potential benefits of continuous monitoring of prostate position and intervention (CMI) using 2-mm displacement thresholds during stereotactic body radiation therapy (SBRT) treatment to those of a conventional image-guided procedure involving single localization prior to treatment.

Methods And Materials: Eighty-nine patients accrued to a prostate SBRT dose escalation protocol were implanted with radiofrequency transponder beacons. The planning target volume (PTV) margin was 5 mm in all directions, except for 3 mm in the posterior direction. The prostate was kept within 2 mm of its planned position by the therapists halting dose delivery and, if necessary, correcting the couch position. We computed the number, type, and time required for interventions and where the prostate would have been during dose delivery had there been, instead, a single image-guided setup procedure prior to each treatment. Distributions of prostate displacements were computed as a function of time.

Results: After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure.

Conclusions: CMI using a tight 2-mm displacement threshold was not only feasible but was found to deliver superior PTV coverage compared with the conventional image-guided procedure in the SBRT setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2014.10.049DOI Listing

Publication Analysis

Top Keywords

dose delivery
12
continuous monitoring
8
prostate position
8
2-mm displacement
8
conventional image-guided
8
image-guided procedure
8
ptv margin
8
computed function
8
prostate
7
dose
6

Similar Publications

Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens.

View Article and Find Full Text PDF

Dosimetric comparison of VMAT plans in preoperative short-course rectal radiotherapy.

Sci Rep

December 2024

Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.

Recently, neoadjuvant short-course radiation therapy (SCRT) has emerged as a valid treatment option for patients with locally advanced rectal cancer (LARC). We assessed SCRT plans using volumetric-modulated arc therapy (VMAT) with Halcyon and Infinity medical linear accelerators (Linacs) and compared the plan quality and delivery efficiency across all cases. Thirty patients who underwent preoperative SCRT for LARC at the hospital were randomly selected.

View Article and Find Full Text PDF

Hypoxic tumors are radioresistant stemming from the fact that oxygen promotes reactive oxygen species (ROS) propagation after water radiolysis and stabilizes irradiation-induced DNA damage. Therefore, an attractive strategy to radiosensitize solid tumors is to increase tumor oxygenation at the time of irradiation, ideally above a partial pressure of 10 mm-Hg at which full radiosensitization can be reached. Historically, the many attempts to increase vascular O delivery have had limited efficacy, but mathematical models predicted that inhibiting cancer cell respiration would be more effective.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Computational exploration of injection strategies for improving medicine distribution in the liver.

Comput Biol Med

December 2024

Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran. Electronic address:

Background And Objectives: The liver, a vital metabolic organ, is always susceptible to various diseases that ultimately lead to fibrosis, cirrhosis, acute liver failure, chronic liver failure, and even cancer. Optimal and specific medicine delivery in various diseases, hepatectomy, shunt placement, and other surgical interventions to reduce liver damage, transplantation, optimal preservation, and revival of the donated organ all rely on a complete understanding of perfusion and mass transfer in the liver. This study aims to simulate the computational fluid dynamics of perfusion and the temporal-spatial distribution of a medicine in a healthy liver to evaluate the hemodynamic characteristics of flow and medicine transport with the purpose of more effective liver treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!