Functional differences in the acinar cells of the murine major salivary glands.

J Dent Res

Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA

Published: May 2015

In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502782PMC
http://dx.doi.org/10.1177/0022034515570943DOI Listing

Publication Analysis

Top Keywords

acinar cells
20
major salivary
20
salivary glands
20
2-fold larger
12
larger smg
12
smg slg
12
glands
8
saliva secreted
8
cl- efflux
8
cl- uptake
8

Similar Publications

Background: Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration.

Material And Methods: Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science.

View Article and Find Full Text PDF

Lampreys are early jawless vertebrates that are the key to understanding the evolution of vertebrates. However, the lack of cytomic studies on multiple lamprey organs has hindered progress in this field. Therefore, the present study constructed a comprehensive cell atlas comprising 604,460 cells/nuclei and 70 cell types from 14 lamprey tissue samples.

View Article and Find Full Text PDF

Background: Pancreatic acinar cell carcinoma (PACC) is a rare subtype of pancreatic cancer and the clinicopathological behavior of PACC is not yet fully understood. PACC rarely invades the main pancreatic duct (MPD), which causes intraductal growth. Thus, herein, we have reported a rare case of PACC that invaded the MPD and disseminated to the branches of the pancreatic duct (BDs) without exhibiting any continuity with the main tumor.

View Article and Find Full Text PDF

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

There are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!