Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic.

Free Radic Biol Med

UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, Rennes, France. Electronic address:

Published: November 2015

Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2-/- mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.003DOI Listing

Publication Analysis

Top Keywords

arsenic
13
il-12 expression
12
arsenic reduces
12
expression
8
expression human
8
dendritic cells
8
inorganic arsenic
8
nrf2 inducer
8
dcs
8
arsenic represses
8

Similar Publications

Premature ovarian insufficiency (POI) is poorly understood, with causes identified in only 25% of cases. Emerging evidence suggests links between trace elements (TEs) and POI. This study is the first to compare concentrations of manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) across urine, serum, and whole blood in women with POI compared to healthy controls (HC), aiming to explore their distribution and potential associations with POI.

View Article and Find Full Text PDF

Rapid on-site colorimetric detection of arsenic(V) by NH-MIL-88(Fe) nanozymes-based ultraviolet-visible spectroscopic and smartphone-assisted sensing platforms.

Anal Chim Acta

January 2025

College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.

View Article and Find Full Text PDF

A comprehensive analysis of the impact of arsenic, fluoride, and nitrate-nitrite dynamics on groundwater quality and its health implications.

J Hazard Mater

January 2025

Third World Center (TWC) for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Groundwater contamination is a growing global concern. The objective of the present study is to assess the groundwater quality of Khairpur district, Sindh, Pakistan-a region which is emblematic of broad environmental and public health challenges prevalent in South Asian countries. The study also aims to comprehend the impact of arsenic (As), fluoride (F), and nitrate (NO) dynamics and its health implications.

View Article and Find Full Text PDF

The speciation and mobility of arsenic (As) in waters are largely influenced by the colloids; however, the impacts of colloids with different molecular weights (MWs) in water fractions remain largely unknown. Herein, the surface water was fractionated into three colloidal fractions and truly dissolved fraction via cross-flow ultrafiltration. Total As (As(T)) presented mainly as As(V) and existed primarily in the truly dissolved fraction.

View Article and Find Full Text PDF

Interactions between phosphate and arsenic in iron/biochar-treated groundwater: Corrosion control insights from column experiments.

Water Res

December 2024

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental, Aquatic Science, China University of Geosciences, Wuhan 430074, China. Electronic address:

An increasing number of studies have reported the coexistence of arsenic (As) and phosphorus at high concentrations in groundwater, which threatens human health and increases the complexity of groundwater remediation. However, limited work has been done regarding As interception in the presence of phosphate in flowing systems. In this study, a series of experiments were conducted to evaluate the interactions between phosphate and As during As removal by iron (Fe)-based biochar (FeBC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!