We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 μm and inter-sheet separation of 380 μm. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (≈4 μm) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.000609 | DOI Listing |
Nat Methods
May 2024
Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
Light-sheet fluorescence microscopy is an invaluable tool for four-dimensional biological imaging of multicellular systems due to the rapid volumetric imaging and minimal illumination dosage. However, it is challenging to retrieve fine subcellular information, especially in living cells, due to the width of the sheet of light (>1 μm). Here, using reversibly switchable fluorescent proteins (RSFPs) and a periodic light pattern for photoswitching, we demonstrate a super-resolution imaging method for rapid volumetric imaging of subcellular structures called multi-sheet RESOLFT.
View Article and Find Full Text PDFPolymers (Basel)
September 2022
Department of Chemical Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy.
Uniformly distributed silica/epoxy nanocomposites (2 and 6 wt.% silica content) were obtained through a "solvent-free one-pot" process. The inorganic phases were obtained through "in situ" sol-gel chemistry from two precursors, tetraethyl orthosilicate (TEOS) and (3-aminopropyl)-triethoxysilane (APTES).
View Article and Find Full Text PDFRev Sci Instrum
June 2018
Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.
We propose and demonstrate a modified spatial filter-based single-shot lithography technique for fabricating an array of microfluidic channels. This is achieved by illuminating the photopolymer specimen with a multiple light sheet (MLS) pattern. Modified spatial filtering is employed in a cylindrical lens system to generate the MLS pattern.
View Article and Find Full Text PDFWe demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles.
View Article and Find Full Text PDFProteins
October 1992
MRC Laboratory of Molecular Biology, Cambridge, England.
Twisted beta-sheets, packed face to face, may be arranged in circular formation like blades of a propeller or turbine. This beta-propeller fold has been found in three proteins: that in neuraminidase consists of six beta-sheets while those in methylamine dehydrogenase and galactose oxidase are composed of seven beta-sheets. A model for multisheet packing in the beta-propeller fold is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!