With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334526 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116532 | PLOS |
Dental titanium implants and their surface modifications markedly improve implant biocompatibility. However, studies evaluating the mechanical biocompatibility of implants are scarce. In particular, the analysis of mechanical biocompatibility deficiencies leading to stress shield-induced bone resorption.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Repetitive manual labor tasks involving twisting, bending, and lifting commonly lead to lower back and knee injuries in the workplace. To identify tasks with high injury risk, we recruited N = 9 participants to perform industry-relevant, 2-handed lifts with a 11-kg weight. These included symmetrical/asymmetrical, ascending/descending lifts that varied in start-to-end heights (knee-to-waist and waist-to-shoulder).
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
Background: Minimizing the duration of mechanical ventilation is one of the most important therapeutic goals during the care of preterm infants at neonatal intensive care units (NICUs). The rate of extubation failure among preterm infants is between 16% and 40% worldwide. Numerous studies have been conducted on the assessment of extubation suitability, the optimal choice of respiratory support around extubation, and the effectiveness of medical interventions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
January 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for characterization of nasal products that may prove useful in examining intranasal delivery of powders. Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!