Associations among Sebox and other MEGs and its effects on early embryogenesis.

PLoS One

Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Korea.

Published: January 2016

In a previous report, we identified Sebox as a new candidate maternal effect gene that is essential for embryonic development and primarily impacts the two-cell (2C) stage. The present study was conducted to determine the mechanism of action for Sebox in this capacity, as shown by changes in the expression levels of other known MEG mRNAs after Sebox RNA interference (RNAi) in oocytes. Sebox-knockdown metaphase II (Mll) oocytes displayed normal morphology, but among the 23 MEGs monitored, 8 genes were upregulated, and 15 genes were unchanged. We hypothesized that the perturbed gene expression of these MEGs may cause the arrest of embryo development at the 2C stage and examined the expression of several marker genes for the degradation of maternal factors and zygotic genome activation. We found that some maternal mRNAs, c-mos, Gbx2, and Gdf9, were not fully degraded in Sebox-knockdown 2C embryos, and that several zygotic genome activation markers, Mt1a, Rpl23, Ube2a and Wee1, were not fully expressed in conjunction with diminished embryonic transcriptional activity. In addition, Sebox may be involved in the formation of the subcortical maternal complex through its regulation of the upstream regulator, Figla. Therefore, we concluded that Sebox is important in preparing oocytes for embryonic development by orchestrating the expression of other important MEGs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331730PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115050PLOS

Publication Analysis

Top Keywords

embryonic development
8
expression megs
8
zygotic genome
8
genome activation
8
sebox
5
associations sebox
4
megs
4
sebox megs
4
megs effects
4
effects early
4

Similar Publications

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

EVALUATION OF THE EFFECTS OF FAVIPIRAVIR (T-705) ON THE LUNG TISSUE OF HEALTY RATS: AN EXPERIMENTAL STUDY.

Food Chem Toxicol

January 2025

Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039 Kayseri, Turkey. Electronic address:

Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor widely used during the COVID-19 pandemic, effectively reduces viral load but has been linked to inflammatory changes in tissues such as the liver and kidneys. High-dose and prolonged use of favipiravir for COVID-19 raises concerns about its potential toxic effects on the lungs, particularly in patients with pre-existing pulmonary conditions. This study investigated favipiravir's effects on lung tissue in healthy rats.

View Article and Find Full Text PDF

Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.

View Article and Find Full Text PDF

A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.

View Article and Find Full Text PDF

Ecotoxicology of cephalopod early life phases: review and perspectives.

Environ Sci Pollut Res Int

January 2025

Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.

The present review provides the first analysis and synthesis of the available scientific information on the effects of anthropogenic contaminants on cephalopod embryos, paralarvae, and juveniles. We evaluated 46 articles published between 1970 and 2023 that focused on trace elements (69%), pharmaceutical compounds (11%), persistent organic compounds (11%), and plastics (9%). To date, the greatest scientific effort has originated from Europe and Asia (France [57%], China [9%], Italy [7%], and Spain [4%]), with few reports available from the rest of the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!